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Abstract. Renewable energy generation is inherently stochastic, and it
rarely aligns with the periods of peak demand. Consequently, and despite
continuous developments in storage technology, there is still a signifi-
cant potential in using demand-side flexibility to balance generation and
demand. The flexibility arises in many contexts, e.g., in the heating of
buildings, and by shifting the demand, we can substantially reduce the
need for infrastructure investments. However, it is not trivial to utilize
the flexibility in a scalable manner. Energy customers are highly diverse
(residential, commercial, industrial, etc.), and in most cases, their energy
demand cannot be controlled directly. Furthermore, flexibility is both a
dynamic and stochastic quantity. When the flexibility is used, it can-
not be used at a later point in time as well. In this paper, we describe
the Smart Energy Operating System, which is a framework for scalable
exploitation of demand-side flexibility. It combines hierarchical forecast-
ing with hierarchies of controllers and models. A key part of this frame-
work is the Flexibility Function. It describes the energy demand of a
flexible asset in response to a price signal, and it is continuously updated
based on the actual demand. An aggregator can use it to predict the
energy demand of the underlying flexible assets and participate in flex-
ibility markets on their behalf. In other words, the Flexibility Function
serves as a minimum interoperability mechanism (MIM). An important
prerequisite is that markets must account for the dynamic and stochastic
nature of flexibility, and we discuss current limitations and opportunities.

Keywords: Smart Buildings · Smart Grids · Flexibility ·
Demand-Response

1 Introduction

Demand-side flexibility (DSF), as defined by smartEn, is “the capability of any
active customer to react to external signals and adjust their energy genera-
tion and consumption in a dynamic time-dependent way, individually as well
as through aggregation” [1]. A well-known example of such external signals is
dynamic pricing, where end-users are equipped with local controllers that can
quickly react to changes in price without manual interventions. Another exam-
ple is a demand response signal that can directly adjust energy consumption of
active customers’ flexible loads such as air-conditioners [2,3].
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Regardless of the external signal choice, DSF can unlock a range of benefits
at both distribution (DSO) and transmission (TSO) system operator levels. The
report [1] outlines the benefits of such flexibility based on the ‘Fit for 55’ objec-
tives [4] and REPowerEU Communication [5] in the low- and medium-voltage
grids as 11.1–29.1 billion EUR savings in investment needs across the 27 EU
countries annually between 2023 and 2030. This represents between 27% and
80% of today’s forecast in investment needs for low- and medium-voltage dis-
tribution grids, between 43% and 66% of saving in balancing costs in European
balancing markets by 2030, 2.7 billion EUR annual savings by 2030 through
enabling 60 GW of DSF rather than installing peak generation units across EU
to ensure supply security, and 61% less (15.5 TWh annually) curtailment in
renewable energy generation in Europe, which will improve the economics of
wind and solar energy and increase the availability of decarbonized electricity to
consumers.

Similarly, some large-scale projects in Denmark, such as the “Center for IT-
Intelligent Energy Systems (CITIES)” [6] and “Flexible Energy Denmark (FED)”
[7], have demonstrated solutions for demand-side flexibility in a number of Living
Labs. The solutions have demonstrate savings from 10% to 85%.

A recent study by an Australian DSO indicates that curtailment of dis-
tributed PV generation in 2029 will be two to four times higher than the current
values [8]. At these levels, solar customers are set to experience solar curtailment
as the norm rather than the exception. The number of low-voltage sections that
experience voltage non-compliance will also increase from the current ∼4k to
at least ∼10k by 2036. DSF can provide an economic way to meet technical
standards around voltage, safety and performance.

For price-responsive customers, prices can be used to control the load as first
suggested in [9]. Methods for using experimental data to estimate the energy
flexibility of households with a price-responsive load were suggested at least as
early as 2009, as part of the FlexPower project [10]. In [11], it is shown how
the variations in penalties can be used to shift the load from peak hours to off-
peak hours. The authors in [12,13] went a step further and described how the
frequency and voltage in power grids can also be controlled by this method.

However, a model for forecasting how clusters of consumers in, e.g., a DSO
area will respond to a particular sequence of prices is needed. [14] introduced the
so-called Flexibility Function, which is simply a map between the response (e.g.,
the load) and incentivizing signal (e.g., the price). A detailed stability analysis
of this flexibility function is presented in [15]. The flexibility function could be
implemented using any type of dynamical model, and it is suggested as one of
the fundamental MIMs for energy systems [16].

While the current options for offering and trading such flexibility is rather
limited, different jurisdictions are moving in this direction. For example, Nord
Pool has introduced the “flexi order”, which is the most appropriate product
for utilising energy flexibility on the day-ahead market. It is a classical block
order with a flexible start and accept hour [17,18]. In Australia, a Wholesale
Demand Response market allows demand side participation at any time, how-
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ever, most likely at times of high electricity prices and electricity supply scarcity.
Demand Response Service Providers classify and aggregate the demand response
capability of large market loads for dispatch through the standard bidding and
scheduling processes [19].

In this paper, we will show how demand-side flexibility can be described
using the concepts of a stochastic flexibility function, and it will be outlined how
a hierarchy of controllers and multi-objective control can be used to take into
account the dynamics linked to various flexible assets. By the use of stochastic
control theory, we address the uncertainty from wind and solar generation and
propose a new market design as well as grid and balancing services for the future
weather-driven energy system.

2 Hierarchical Control for Utilising Flexibility

This section describes how sequential dynamic optimization, implemented as
controllers in a multi-level or hierarchical control setup, can be used to solve
both grid performance and balancing problems. Here, we use buildings as an
illustrative example to showcase the flexibility utilisation. Briefly speaking, we
will describe how the physics (dynamical formulations) of the buildings and grids
can be linked to the conventional electricity markets which are characterised by
bidding and clearing (static formulations). We will then briefly outline how these
principles can be generalised to multi-level and hierarchical control problems.

First, we explain how to control the electricity demand for smart buildings by
generating energy prices such that the building reacts and adapts its consump-
tion according to some criteria. For instance, in a peak shaving application,
smart buildings aggregate demand should follow a reference respecting a max-
imum allowable load. The basic concept is illustrated by Fig. 1, where a smart
building takes an input (price) which results in an output (demand). Data-
driven techniques are used to estimate the price-demand relationship, known as
the Flexibility Function. This function can then be used to predict demand as a
dynamic function of price.

Fig. 1. The Flexibility Function can be used to predict the demand of a smart building
a function of prices.
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Given a Flexibility Function for the building, a second controller can be
formulated where the objective is to control the building’s demand according
to some criteria, and the decision variable is the price (say, electricity price as
a function of time). As shown in Fig. 2, the Flexibility Function along with a
secondary controller can be used to generate prices such that the demand follows
a reference. The reference could be given by the expected local PV production
or any other desired energy consumption in time. Notice how the demand acts
as the feedback to the controller, closing the loop.

Fig. 2. A price generator implemented as a controller uses the FF and demand feedback
to generate price signals for controlling the demand.

Let FF be the Flexibility Function that takes energy prices as input and
provides the building’s expected demand as output, while rl is a reference load
profile. Then, a simple upper-level controller (the price generator in Fig. 2) can
be defined as the following optimization problem

min
Cu

(FF(Cu) − rl)2, (1)

where Cu is the future energy prices. An example of such a controller is the
minimum variance controller [20], but these controllers typically lead to high
variability of the control signal; i.e. the prices in this case. Obviously, it might
be necessary to impose limits on how much the price can change or requirements
on the average value, and a more sophisticated optimization problem than the
minimum variance formulation can be formulated, as discussed in [21]. Combin-
ing this optimization problem with the lower-level optimization problem of the
building’s heating system, the Flexibility Function couples the two levels:

min
Cu

(FF(Cu) − rl)2 Upper level

min
uk

∑

k

C�
u uk Lower level

s.t. dx = f(x, u, d, t)dt + g(x, u, d, t)dω,

Pr(xmin ≤ x ≤ xmax) ≥ 1 − α

(2)
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where the functions f and g are the drift and diffusion coefficients of the grey-box
model of the flexible asset. Here, the grey-box model is formulated as a set of
stochastic differential equations for the temporal evolution of the states x of the
considered asset with u and d as controllable and uncontrollable input, respec-
tively. Such grey-box models for buildings are presented in numerous papers
([22–24]). In this case, the lower optimization problem is formulated as an eco-
nomic MPC problem with chance constraints [25,26].

The coupled upper and lower level controller structure (2) relies on a fixed
FF. However, the price-demand dynamics are time-varying, influenced by factors
such as seasonal changes and shifts in consumption behavior due to abnormally
high energy prices. This variability necessitates an adaptive mechanism capable
of tracking these dynamic changes. An adaptive flexibility function is proposed in
[27]. It can update the price signal based on changes in price-demand dynamics
without requiring explicit identification of the flexibility function. Furthermore,
this approach eliminates the need for a manual, customized modeling-and-control
procedure for each flexibility resource. Therefore, the adaptive flexibility function
can be seamlessly deployed across different assets in a plug-and-play fashion,
facilitating mass adoption.

As it will be explained more in Sect. 6, the main reason why the Flexibility
Function is suggested as one of the fundamental MIMs for energy systems is that
the FF is instrumental for interoperability between the building level and the
upper level representing the grids and aggregators.

Notice how the two optimization problems are solved independently from
each other, thus preserving autonomy and privacy for the building owners while
simultaneously allowing a stakeholder (e.g., supplier, aggregator, or balance
responsible party) to utilize the energy flexibility. In practice, there will be many
smart buildings for each aggregator, each with independent control problems and
preferences.

The development of building energy management systems and smart build-
ings is left open to competition among commercial stakeholders, while the flexi-
bility function remains agnostic to specific types and technologies of controllers.
Finally, this method scales well since the computational burden for the upper-
level remains constant with the Flexibility Function simply representing the
expected aggregated response from the relevant cluster of smart buildings [21].

3 Using the Flexibility for Multi-purpose Control

In the previous sections, the upper-level controller received the load reference as
input and created a sequence of prices to make the building demand follow the
desired reference. This optimization was based on the known flexibility dynamics
represented by the Flexibility Function. This setting is appropriate if we want to
establish demand-side load management, which could be useful for peak-shaving
or for maximizing self-consumption, e.g., in the case of local PV production.

The sketched methodology, however, can be generalized into other situations.
Let us for instance consider the problem of voltage control with a reference
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Fig. 3. Hierarchical control for utilising flexibility

voltage rvoltage. Then, the voltage controller can be defined as the upper-level
controller

min
Cu

(FFvoltage(Cu) − rvoltage)2, (3)

where the FFvoltage is a flexibility function describing the dynamical relations
between prices and voltage for the considered low-voltage distribution area.

Such an upper-level controller can be used to, e.g., postpone costly invest-
ments and ensure safe operations of power transformers, which are one of the
most costly assets in power grids. Without such settings and due to the increasing
levels of electricity demand and distributed generation, transformers are more
likely loaded above their rated limits, which may cause serious lifetime reduc-
tions and increase failure rates. While transformer ratings are traditionally set
in a controlled environment with conservative margins, it has been shown in [28]
that a digital twin model of transformers can be used for dynamic transformer
ratings, where it can be dynamically overloaded up to 60% without any risks
for damages.

Until now the purpose of the low-level controller has been to minimize the
operational cost. However, it is possible to change the low-level controller. For
example, if we use real-time CO2 emissions associated with electricity consump-
tion as the penalty signal, then the controller will minimize the carbon footprint
of the system. This example of low-level controllers is used in, e.g., [29,30] for
controlling the temperatures in summer houses with a swimming pool such that
the carbon footprint is minimized.

As explained in [29] and shown in Fig. 3, by changing the cost function, the
low-level controllers can be used for i) cost minimization, ii) carbon footprint
minimization, or iii) energy efficiency optimization. Note that a goal of modern
regulation for the energy sector would be to ensure that, e.g., cost and emission
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optimization go hand-in-hand. Unfortunately, this is often not the case today.
For instance, as explained in [31], wastewater treatment plants could only save
up to 50% on their carbon footprint due to the embedded flexibility.

4 Controllers and Markets

The ultimate goal of the future smart energy system is to establish a connection
between the lower-level local controllers and upper-level markets operating at
large scales. This includes coupling sectors and establishing dynamic markets to
reflect an increasingly dynamic supply and demand of energy. At the same time,
the established markets and controllers must ensure that power systems on all
temporal and spatial scales are balanced. Essentially, it means that a spectrum
of all relevant spatial aggregation levels (building, district, city, region, country,
etc.) has to be considered. Consequently, data-intelligent solutions for operating
flexible electrical energy systems have to be implemented on all spatial and
temporal scales.

Traditionally, power systems are operated by sending bids to a market. How-
ever, in order to balance the systems on all relevant horizons, several temporal-
specific markets are needed. Examples are day-ahead, intra-day, balancing, and
regulation markets. The bids are typically static and consist of a volume and
duration. Given all the bids, the so-called supply and demand curve for all
the operated horizons can be found. Mathematically, these supply and demand
curves are static and deterministic. Merit order dispatch is then used to opti-
mise the cost of generation. However, if the production is from wind or solar
power, the supply curve must be stochastic, and the demand flexibility has to
be described dynamically - e.g., by use of the introduced Flexibility Function.
Consequently, it is believed that introducing new digitised markets, which are
dynamic and stochastic, is necessary. Also instead of using a large number of
markets for various purposes (frequency, voltage, congestion, etc.) and on differ-
ent time frmas, we propose utilizing concepts based on the Flexibility Function
and stochastic control theory; exactly as described in the previous section for the
two-level case. We call this the Smart Energy Operating System (OS) [13,16,30],
which will be explained further in Sect. 6 and illustrated in Fig. 5.

If we zoom out in space and time, i.e., consider the load in a very large
area on a horizon of days, or maybe the next day, then both the dynamics and
stochasticity start to matter less (and might be disregarded), and hence we can
use conventional market principles as illustrated in Fig. 4. If we zoom in on
higher temporal and spatial resolutions (like for instance a house), the dynamics
and stochasticity become important, and consequently, we will suggest using the
control-based methods for the flexibility as discussed previously.

Having a smart Energy OS implies that a real-time connection between con-
trollers and the flexible assets (e.g., buildings) is handled by a one-way com-
munication, i.e., broadcasting the price signal. The consumer can then easily
self-dispatch according to prices without any further complications, e.g., having
to submit bids.
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Fig. 4. Hierarchical control and markets.

The simplicity of broadcasting price signals to activate demand-response,
needed for instance by a DSO, implies that basically all appliances can con-
tribute to unlocking the needed flexibility at the relevant spatial and temporal
coordinates. At the same time, end-users can still customize their local prefer-
ences in the Home Energy Management Systems (HEMS) by prioritizing factors
such as comfort, cost, emissions, and energy efficiency [32]. The overall simplicity
of the proposed setup ensures quick adaptation and encourages widespread use
of flexibility and demand response technologies in the market. A comprehensive
model, integrating these concepts into a TSO-DSO coordination framework, is
presented in [33].

Basically, the setup distributes the computational effort across multiple lev-
els of the hierarchy, where each level (e.g., TSO, BRP and DSO) has a controller
linked to some well-defined criteria and constraints. Such a setup with a simple
broadcast of a price signal also provides a direct possibility for sector coupling
and multi-energy supply systems. For instance, air-to-air heat pumps can be
used jointly with natural gas heating systems and HEMS can easily switch from
natural gas to electricity when electricity prices are low. This setup would accel-
erate the transition to green energy and offer extra flexibility, thereby reducing
the instances when, for example, wind turbines are stopped by grid operators.

5 Market Design Challenges

5.1 Market Design for Activating Local Flexibility

Several projects and initiatives have studied the possibility of controlling, e.g.,
the load in a distribution grid by setting up a local DSO market [34,35]. However,
it has been concluded that conventional market mechanisms are not suitable
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here [30]. First of all, the number of potential bidders and the market size is
very limited. Moreover, even for larger flexible assets, energy flexibility is only
of secondary concern. As an example, we can consider the conclusion from a
series of workshops for wastewater treatment plants organized by Energinet and
Center Denmark. Wastewater treatment can be very flexible, but the primary
concern for the operator of wastewater treatment plants is to avoid overflow in
the city. The second priority is to keep the flow at the plant below some given
values to ensure that the active part of the sludge stays on the plant, while
saving money due to energy flexibility is at best a third priority. Given even
a small probability of a severe rain event, wastewater plants will not bid into
the markets. Furthermore, they found the price-volume bidding strategy to be
difficult or impossible to use. The suggestion was to introduce an aggregator
which trades on the electricity markets and then broadcasts a dynamic price
signal to the wastewater plants. However, from the wastewater treatment plant’s
perspective, it does not matter where this dynamic price signal comes from. [31]
demonstrated savings up to around 50%. The savings can be shared between the
aggregator and the wastewater treatment plant.

Fig. 5. The Smart Energy OS

5.2 Where Does the Market Stop and the Physics Begin?

Another barrier is the fact that the conventional market design with merit order
bidding and subsequently clearing represents a static problem, but the local flex-
ibility represents a dynamic problem. Therefore, the bidding formats of tradi-
tional market mechanisms do not offer enough expressive richness to capture the
temporally coupled characteristics of the new market players [36].
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Consider a supermarket where the cooling system serves as a flexible asset.
The problem is that if the supermarket reduces its electricity usage for cooling
in a particular hour, it may not be possible to offer a similar flexibility for
the subsequent hour because it is necessary to keep the goods within specific
temperature ranges (typically below 5–6◦ C). However, at higher aggregation
levels, e.g., day-ahead at price-zones operated at the Nord Pool spot market, the
existing market mechanisms should be preserved since they act as an important
mechanism to find the overall level for the electricity prices.

In summary, we need an interoperability mechanism to define the link
between the high-level static markets and the low-level physics. Later on, we
will suggest the previously introduced Flexibility Function as a fundamental
MIM for this purpose, and hence for describing the link between the markets
and the physics. The MIMs [37] are now becoming an important instrument in
the twin transition in Europe and globally, as they are approved by ITU and 17
member organisations [38].

6 The Smart Energy OS

Principles for forecasting, control and optimisation constitute the so-called Smart
Energy OS, which is a framework used to develop, implement, and test solutions
(layers: data, models, optimisation, control, communication) for the hierarchical
and coherent operation of flexible electrical energy systems at all scales. See
[13,30,39] for further information.

An efficient implementation of the future low-carbon energy system requires
the electricity demand to follow the weather-driven energy production at all
scales of the power system. The future calls for more coordination between the
low- and high-voltage system operators and, consequently, there is a need for
coherence between actions taken by the TSO and DSOs, who operate at dif-
ferent spatial scales. The coordination in Smart Energy OS goes beyond previ-
ously introduced hierarchical control. As an example, a method for hierarchical
forecasting of wind power production suggested in [40] has led to a significant
improvement of wind power generation forecasts and at the same time the fore-
casting hierarchy ensures that the forecasts seen by the TSO and the DSOs are
coherent. In [41], similar hierarchical forecasting techniques are used for improved
load forecasting in all four price areas in Sweden.

The Smart Energy OS principle is using the Flexibility Function as one of
the fundamental MIMs to ensure minimal but sufficient interoperability between
all relevant levels. For many applications, low-cost solutions can be established
using mobile phones, smart home management systems, and similar edge com-
puting technologies. Data is often collected at the edge, but aggregated on higher
levels of the hierarchy, and computations are carried out, in a coherent hierarchy
consisting of edge, fog, and cloud computing levels with privacy, transparency,
and fairness in mind.

The Smart Energy OS is a hierarchical setup as indicated in Fig. 5. At the
top level, it consists of conventional markets, but at the lower levels, it consists
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of methods for combined direct and indirect control. The experience at, e.g., the
smart energy hub, Center Denmark, is that most of the building related demand
response methodologies are based on indirect price-based control.

At the same time, the Smart Energy OS is designed as a hierarchical sys-
tem for energy data spaces, i.e., for data handling and information exchange
frameworks, ensuring a unique coherence across all relevant spatial and tempo-
ral aggregation scales, and with a focus on multi-objective criteria like energy
efficiency and flexibility.

Conceptually, the Smart Energy OS relies on the MIMs roadmap, which
aims at providing building blocks for an efficient digitalization of the society in
general, and in providing functionality across different but related domains like
energy, transportation and water. The intention is not to replace existing market
mechanisms but to accomplish this with a MIMs-compliant framework for an
efficient scale-up of local flexibility concepts (e.g., for large-scale integration of
wind and solar energy) while supporting local initiatives like district heating and
local energy communities.

Data for energy systems forecasting and services is an important example
being built upon the Smart Energy OS concepts. Here, unique frameworks and
data spaces for the exchange of information between all relevant aggregation
levels have been established. More specifically, the Smart Energy OS concept
contains a framework of spatial and temporal hierarchies for ensuring that fore-
casts of, for instance, the wind power generation are coherent across all relevant
aggregation levels, as explained, e.g., in [42].

Integrity - including privacy, transparency, security, and reliability - has fore-
most importance in the Smart Energy OS, and in all essential cases such issues
are dealt with by design in a consistent and verifiable way. The one-way broad-
cast of prices in the Smart Energy OS ensures privacy by design.

A key element of the data exchange framework between, e.g., residential
homes and grid operators is the Flexibility Function [14], as previously intro-
duced in Sect. 5.2. The Flexibility Function is one of the fundamental MIMs-
related features within the Smart Energy OS setup, and it represents a condensed
data exchange framework which is used, for instance, to create a coherent link
between the low-level physics (e.g., the thermal inertia of the buildings) and
high-level electricity markets.

The Flexibility Functions are used also for sector coupling and for hybrid
energy systems; an example being buildings with both district heating and heat
pumps. Finally, the Flexibility Function can be used at all aggregation levels,
e.g., for the appliance, the house, the district, the city, and larger regions.

Another key element of the Smart Energy OS is the data-driven digital twin
or grey-box models. The grey-box models allow for real-time data from sensors
and measurements to improve the forecast and control performance. Moreover,
the Smart Energy OS manages to keep privacy-related information at the edge.
This is possible due to the fact that the Flexibility Function contains all relevant
information for instance for the balance responsible parties as well as for the
distribution grid operator [26].
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The Smart Energy OS concepts, and in particular the integrated standard
Flexibility Function for activating flexibility at all levels and across all relevant
energy vectors, imply that flexibility and interoperability can be obtained every-
where using low-cost technology. The simplicity of broadcasting price signals for
activating demand-response implies that basically all appliances can contribute
to unlocking the needed flexibility at the relevant spatial and temporal coordi-
nates. At the same time, the end-user can set up local preferences in a weighted
combination of a focus on costs, emissions and energy efficiency. The overall sim-
plicity of the concepts ensures fast adaptation and stimulates an effective scale
up of the use of flexibility and demand response technologies in the market [26].

In the Smart Energy OS framework, the computations are done at many
levels of the system hierarchy. The Smart Energy OS for can be used to pro-
vide grid and balancing services for power systems, as illustrated in this paper.
However, also for Community Energy Management Systems (CEMS), and Home
Management Information Systems (HMIS) the concepts can be used to provide
information about the aggregated flexibility which can be offered from a particu-
lar building, a cluster of buildings or an energy community. The concept has been
demonstrated at scale in the ebalanceplus [43], Flexible Energy Denmark [44],
and SmartNet projects (EU H2020) [30], to provide flexibility using a hierarchy
of controllers at multiple levels.

7 Real Life Examples

7.1 Demand Side Flexibility Extraction via Market Level

Smart Energy OS setup offers a new possibility for specialized aggregators, which
can take advantage of domain expertise (summer houses, wastewater treatment
plants, supermarkets, etc.), and use the flexibility function for their pool of assets
to buy more electricity on the high-level markets when the electricity is cheap and
then use the flexibility function to find the price to broadcast to their cluster
of users in order to incentivize an optimal demand-side response [26]. In the
existing Scandinavian market, only the so called flexi orders exist. Flexi orders
consist of an interval, an amount of energy, and a duration. For example, during
the interval 8:00 to 12:00, we will buy 1 MWh of energy for 2 h (duration), and
with the Smart Energy OS setup, we will purchase 1 MWh in the cheapest 2 h
within the given time interval. This can be combined with regular spot market
bids to obtain the final flexibility.

The Smart Energy OS setup and the use of the flexibility function are illus-
trated in Fig. 6. The specialized aggregator takes advantage of the Flexibility
Function for buying more energy on the conventional markets when the prices
are low, as well as for broadcasting the price signal to the energy flexible system.
For the particular example illustrated in Fig. 7, we see the normal base load
(green curve) and the spot price (grey area). The orange curve shows that the
aggregator takes advantage of the flexibility and buys more energy when it is
cheap and less when it is expensive. The dark-grey area in Fig. 8 shows the price
signal broadcasted to the actual cluster of flexible assets. This setup, where the
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Fig. 6. The setup used by the specialized aggregator, which uses the Flexibility Func-
tion for optimal market participation

Fig. 7. Spot price, based-load and bought energy

Smart Energy OS is used by an aggregator, is for instance used to save electricity
costs for the operation of water towers [18], and in [45], the concept is used for
water pumping.

7.2 Demand Side Flexibility Potential of HVAC System

To demonstrate the effectiveness of connecting the high and low levels of the hier-
archy in the Smart Energy OS using an identified flexibility function, we use data
from a new development in Fredrikstad, Norway, as part of the syn.ikia project
[46]. This development is the largest plus-energy housing project in Norway, with
a strong focus on energy sharing and flexibility within the neighborhood. The
HVAC system in this neighborhood, illustrated in Fig. 9(a), consists of a heat
pump and a storage tank. The heat pump generates thermal energy, while the
storage tank stores a significant amount of hot water for the building. Given
the high flexibility potential of the HVAC system, we aim to control it using a
model predictive controller [47]. The connection between the levels of hierarchy
is facilitated by the identified flexibility function. This function receives informa-
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Fig. 8. The price-signal sent to the end-users for an optimal activation of the flexibility

Fig. 9. (a) Building energy management system with HVAC system control. (b) Sim-
ulation results of the MPC using optimal penalty signal.

tion about the day-ahead purchased energy from an aggregator and generates
an optimal price signal as discussed in (2).

Simulation results demonstrating the efficacy of the employed controller with
optimal penalty signal generation are shown in Fig. 9(b). The top panel displays
the water temperature at the top and bottom of the tank, while the second
panel illustrates the electricity consumption for heating the water. The third
panel presents the ambient temperature, and the fourth and fifth panels show
the requested load of the tank and the optimal penalty signal, respectively. The
results indicate that the controller effectively shifts the demand to periods with
lower penalty signals and maintains the tank temperature within specified limits.
Furthermore, the optimal penalty signal ensures that the demand aligns with the
purchased energy.



Recent Trends in Demand-Side Flexibility 181

8 Summary

Exploiting demand-side flexibility is key to enabling the green transition to a
fossil-free society, and it can reduce the need for expensive expansions of the
electricity grid. Furthermore, demand-side flexibility can be used for a number
of purposes (e.g., load shifting and voltage control) and in both local distribu-
tion networks and the overall power and transmission system. However, it is not
straightforward to exploit demand-side flexibility at scale, and it requires a sig-
nificant level of digitalization and smart controllers for automating the process.

We argue that such a highly digitalized and automated system must be mod-
ular, with interactions between relevant parts facilitated by MIMs. For instance,
an aggregator interacts with the underlying flexible assets and trades on their
behalf. We propose using Flexibility Functions as MIMs. They are data-driven
models of flexible assets’ energy demand over time as functions of a time-varying
price signal (typically, electricity price). They enable aggregators to 1) predict
the amount of flexibility they can trade on flexibility markets and 2) indirectly
control the aggregated energy demand of the flexible assets. However, we also
discuss important limitations of current market structures that complicate the
adoption of this approach. Specifically, flexibility is traded as a static commodity
although it is a highly dynamic quantity with a strong temporal coupling. For
instance, if a flexible asset uses all of its flexibility in a given hour, it cannot
trade flexibility in the following hour. Additionally, flexibility is considered to be
a deterministic quantity, but it is often uncertain and stochastic in nature. Thus,
we claim that flexibility markets should account for this temporal coupling, and
we propose to use the Flexibility Function for this purpose as well.

Finally, the hierarchy of controllers (used by the flexibility aggregators and
sub-aggregators) must be complemented with forecasting of energy production
and demand. Furthermore, the forecasts at the different levels (e.g., at DSO
and TSO levels) need to be consistent in order to ensure interoperability. We
call this combined hierarchy of controllers and consistent forecasts the Smart
Energy Operating System, and we argue that it is the most effective and realistic
approach for achieving scalable and fair exploitation of demand-side flexibility.
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