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Renewable Energy Sources play a key role in smart energy systems. To achieve 100% renewable energy,
utilizing the flexibility potential on the demand side becomes the cost-efficient option to balance the grid.
However, it is not trivial to exploit these available capacities and flexibility options profitably. The amount of
available flexibility is a complex and time-varying function of the price signal and weather forecasts. In this
work, we use a Flexibility Function to represent the relationship between the price signal and the demand
and investigate optimization problems for the price signal computation. Consequently, this study considers the
higher and lower levels in the hierarchy from the markets to appliances, households, and districts. This paper
investigates optimal price generation via the Flexibility Function and studies its employment in controller
design for demand-side management, its capability to provide ancillary services for balancing throughout the
Smart Energy Operating System, and its effect on the physical level performance. Sequential and simultaneous
approaches for computing the price signal, along with various cost functions are analyzed and compared.
Simulation results demonstrate the generated price/penalty signal and its employment in a model predictive
controller.

1. Introduction of this framework leads to a high level of complexity and indicates

the need for a digitalization of the entire energy domain as offered by

Adoption of Renewable Energy Sources (RESs) is a prominent step
toward carbon neutralization, and consequently, is a solution to mit-
igate global warming. Connecting these new sources to the grid can
bring new challenges due to their intermittence, fluctuating power
generation, and dependency on environmental conditions [1,2]. For
instance, the output of wind turbines and photovoltaic (PV) panels is
a complex function of many variables, like meteorological variables
and dirtiness of blades or panels, and varies seasonally, daily, or at
even higher frequencies. Difficulty in predicting these sources of power
generation complicates the energy management [3-5].

Different from the traditional energy management systems, which
are dependent on increasing the electricity supply to overcome the de-
mand peaks, modern energy systems rely on demand-side management
(DSM). To this end, demand loads are accommodated to the supply
capacity throughout each hour of the day. This requires a permanent
data transfer between the supply and demand sides [6-11] as well as a
hierarchy of methods and models for aggregation, forecasting, control
and optimization [12]. The entire hierarchical framework, which is
entitled the Smart Energy OS (Operating System) [13,14], has been
used in several projects to activate demand-side flexibility; see for
instance [15-17].

Various levels and elements of Smart Energy OS are depicted in
Fig. 1. The required data and information transfer between the elements
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the Smart Energy OS. For the modern weather-driven energy system,
methods for connecting high-level grids and balancing challenges with
the low-level flexible demand are needed [18]. This can be offered
efficiently by enhancing the connection between the elements using a
reliable model for the price-demand relationship [19-21].

A Flexibility Function (FF) is introduced as a key element to keep
the different parts of Smart Energy OS connected. The FF is a stochastic
model that represents the price-demand dynamics in energy systems.
On one hand, it provides information on the load prediction and flexi-
bility potential for aggregators, grid operators, and balance-responsible
parties, and on the other hand, it is capable of generating price signals
for the electricity market and advanced controllers in energy manage-
ment systems [22-25]. In this paper we will focus on power systems,
but the Smart Energy OS is able efficiently to handle integrated energy
systems and sector coupling. It is rather obvious that sector coupling
like power to heat and PtX, enhances the flexibility of the energy system
and hence the possibilities for large-scale integration of fluctuating
renewables.

It is noted that when employing a nonlinear price-demand dynami-
cal system, like the Flexibility Function, in various levels of the Smart
Energy OS a methodology to guarantee stability is required. To take
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Fig. 1. The smart energy OS.

care of dynamic updates of FF, an Adaptive FF (AFF) is proposed
in [26]. The AFF takes the time-variation of price-demand dynamics
into consideration and updates the price signal such that the error
between the actual and predicted demand is minimized while stability
is guaranteed.

In this paper, we investigate optimal price generation via the FF
and study its employment in controller design for demand-side man-
agement. The generated price/penalty signal can then be utilized for
ancillary services throughout the Smart Energy OS. In particular, we
focus on the Smart Energy OS and its elements and their connections
and introduce the capabilities of FF to enhance it. For instance, we dis-
cuss demand predictability as a function of price, FF for grid balancing,
and FF for physical level performance improvement. Sequential and
simultaneous approaches for computing the price signal and providing
ancillary services, along with various cost functions are analyzed and
compared. The generated optimal price is then utilized in a model pre-
dictive controller to improve cost efficiency by shifting the electricity
load to some low electricity price periods of the day.

This paper is organized as follows: Section 2 gives an overview
of a Smart Energy OS and its components. Section 3 describes the
connection between various elements of the energy system. In Sec-
tion 4, demand prediction using FF is introduced. In Section 5, optimal
price generation using FF is investigated. Sections 6 and 7 discuss the
benefits of using FF for the higher and lower levels of energy systems,
respectively. Section 8 demonstrates the simulation results of optimal
price generation. In Section 9, we discuss how price signal generation
based on FFs can be used to indirectly control other types of energy
demand, and we use district heating as an example. Finally, a summary
is given in Section 10.

2. Smart energy operating system

Smart energy systems and their elements for forecasting, control,
and optimization constitute the so-called Smart Energy OS (SE-OS). The
SE-OS describes the connection and data transfer between each segment
of the power system, decision-making mechanisms, stability algorithms,
etc.

Various elements and levels of SE-OS are given in Fig. 1. This figure
divides the elements of the Smart Energy OS into four levels. The top
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level consists of electricity markets, Transmission System Operators
(TSOs), Distributed System Operators (DSOs), and balance responsible
parties (BRPs). Generally, energy management at this level is done for
a country, region, or city. Their macroscopic point of view takes care
of stability, performance, and electricity prices.

Aggregators and related forecasting services are in the next level of
OS. They are responsible for the energy management in a city, district,
micro-grid, or neighborhood and provide vital information required for
energy management and control at this medium level. Neighborhoods
and buildings, renewable energy resources like large-scale PVs, and
wind turbines can also be considered at this level. Humans, appliances,
batteries, and charging panels for electric vehicles (EVs) are at the
lower level. Heating, ventilation, and air conditioning (HVAC) systems
and storage tanks are also parts of the lower level.

Within the Smart Energy OS framework advanced controllers and
optimization algorithms are employed to preserve the stability and
optimize the performance of the lower level. As a result of the market
clearing, optimization, and controllers at the upper and medium levels,
a dynamic price signal is provided for the low-level controllers. This
price signal is a composite signal resulting from all the market, balanc-
ing, and ancillary service problems at the higher level. The objective
of the lower-level controllers is to activate demand-response solutions,
such that the efficiency of the entire system is guaranteed.

The concept offered by the Smart-Energy OS provides a real-time
one-way broadcasting of dynamic prices. The information embedded in
the FF can be harvested either offline or by edge computing, e.g. in the
smart-home management system. This provides solutions with a focus
on cyber security and the one-way real-time signal ensures privacy by
design.

As seen by the end-users, i.e. both the industry and the residential
sector, the setup ensures that the end-users are in charge of making the
final decisions, and the framework aims at facilitating a trusted spatial—
temporal setup that puts priorities in empowering the users such that
they are able to provide digitalized and efficient demand-response solu-
tions without being subject to disproportionate technical requirements,
contracts, administrative requirements, charges, and procedures.

3. Linking market’s level to the physical level

One objective of the Smart Energy OS is to facilitate load shifting
through the utilization of flexible assets, e.g., buildings, supermarkets,
and water treatment plants. The operators of such flexible assets can
offer their flexibility through conventional market mechanisms. How-
ever, load shifting only has a low priority for many flexible assets.
Therefore, they estimate their flexibility conservatively. For instance,
although a supermarket is able to shift its cooling load from peak
hours, its main priority is to prevent its goods from being spoiled.
Consequently, in the presence of uncertain weather forecasts, they are
unlikely to bid into markets and fully exploit their potential flexibility.
Similarly, wastewater treatment plants can be operated flexibly, but the
primary objective is to prevent overflow and the secondary objective
is to sustain the active part of the sludge by limiting the flow rate.
Therefore, even for low probabilities of severe rainfall, they are also
unlikely to bid into markets.

For the lower levels of the hierarchy, we consider conventional
market mechanisms to be unfeasible. For instance, the low-voltage grid
operator (DSO) has to ensure a proper voltage level throughout the
electrical feeder and ensure that the temperature of the transformers
is within the given constraints. However, typically the number of
potential market participants along a feeder is too low to ensure enough
bids for a conventional market, and furthermore, it is often seen as a
challenge e.g. for residential users to provide bids or sign a flexibility
contract. Here the simple setting of a dynamic broadcasting of prices is
often successful in activating the flexibility potential [15].

Operationally the utilization of flexibility can be mitigated by letting
specialized aggregators trade on the electricity market and broadcast
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price signals to the flexible asset operators. As the aggregators offer
the same price to all of their customers, this approach is fair and
transparent. Specialized aggregators could focus on specific sectors.
As an example, it seems to be advantageous to have specialized ag-
gregators for harvesting the flexibility of wastewater treatment plants,
since this calls for specific knowledge of the physical systems delivering
the flexibility. However, it requires that each aggregator can assess
and predict the flexibility of the underlying assets. The FF is used for
this purpose. It quantifies the dynamic load behavior as a function of
price signals, i.e., the temporal price-sensitivity of the flexible asset.
Furthermore, (1) it is data-driven and should continuously be updated
based on the latest data from the asset, and (2) it can account for the
uncertainty in the operator’s behavior. We refer to the work by [22,23]
for more details and different types of FFs. In summary, FFs constitute a
central element of the Smart Energy OS as it provides the link between
markets (where the aggregator trades) and the physical reality (where
the flexible asset is operated).

4. Demand prediction using FF

The ability to predict demand is an appealing and important task in
energy systems. Having enough information about the demand leads
to more efficient energy management. For instance, this information
can be employed in advanced controllers for peak shaving and load-
shifting purposes. Consequently, this invaluable information is effective
in diminishing the costs of energy consumption dramatically.

The FF, as a dynamic mapping between demand and price, is capa-
ble of providing demand prediction as a function of baseline demand
and the electricity price. The nonlinear FF, as introduced by [23], is a
stochastic dynamical system of the form

dX, = f(X;,U, B)dt + g(X)dw,
Y, = h(X,,U,, B)) (€]

where X, is the flexibility state, U, is the electricity price, B; is the
baseline energy demand, and w is a Wiener process. The output of the
nonlinear FF is the predicted demand, Y,. The dynamics of the flexibility
function can be inferred in a manner similar to those of a battery.
Consequently, the flexibility state can be interpreted as analogous
to a battery’s state of charge. Moreover, hourly average demand of
historical demand data can be used as the baseline.

Fig. 2 demonstrates the predictability of a nonlinear FF provided
for a new development in Fredrikstad, Norway [27]. A model of the
building is provided and a price-responsive controller is designed to
control the demand. Then, the demand is utilized to identify the
parameters of the nonlinear FF. It is seen in Fig. 2 that the demand
predicted by the FF is close to the simulated actual demand generated
by controlling the building model. This shows that the FF is a dynamic
demand prediction tool that can be employed at different levels of the
Smart Energy OS. Notice, that the FF provides a method for predicting
the demand for price-responsive systems in the case of dynamic pricing
mechanisms.

The ability to predict the demand based on the electricity price
makes the FF a key element for generating optimal price (penalty)
signals, that can be utilized in many control systems. Price signal
generation using the FF is discussed in the next section.

5. Methodologies for optimal price generation using FF

This section is dedicated to the methodologies for the employ-
ment of the FF in optimization algorithms to generate the optimal
price (penalty) signals. The nonlinear FF, as introduced by [23], is a
stochastic dynamical system and is introduced in (1). The dynamics
of FF utilize the electricity price and the baseline demand as inputs
and provide a prediction for the energy demand. Therefore, it can be
considered as a function of the form

Y, = FF(U,, B,). ()]
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Fig. 2. Demand prediction using flexibility function.

The proper form of FF (2) makes it an appropriate option to be
employed in optimization algorithms. For instance, there are many
players in modern energy systems like DSOs, TSOs, and aggregators,
that can profitably make use of it. As shown in Fig. 1, aggregators are
in connection with the DSO, TSO, BRP, the market (higher levels), and
the consumers of a specific area or neighborhood (lower levels). Their
intermediate role is an opportunity to connect the advanced controller
to the higher levels of the Smart Energy OS. Every day, an aggregator
purchases a specific amount of energy for each hour based on the
forecasts, baseline demands, and the demand predicted by FF. Once the
bought energy is determined, a smart scheduling algorithm is required
to manage the consumption, so that the demand does not exceed the
purchased energy. This can be done using an advanced controller like
a model predictive controller that uses a penalty (price) signal to shift
the energy consumption. The block diagram consisting of higher and
lower levels of Smart Energy OS in the presence of FF is illustrated in
Fig. 3.

The optimal price can then be generated by utilizing the identified
nonlinear FF (2) in an optimization problem:

minjmize J (FF(U,, B)-D,, ) , 3)

where D, is the amount of energy bought by the aggregator, i.e., it
can be considered as a reference to be followed, and J is a cost func-
tion. The optimization problem should be solved for each individual
hour, t = {1,..., N}, where N is the number of upcoming hours for
which energy is bought. The optimization problem (3) finds the optimal
price (U,) for each 7 that minimizes the difference between the bought
energy (D,,;) and the predicted demand (FF(U,, B,)) for each t. Note
that, at any given time, the predicted demand, Y,, depends indirectly
on previous price signals, reference demands, and baseline demand
through the flexibility state, X,. The price signal ([U;,...,Uy]) can
then be employed in a model predictive controller formulation for load
shifting and demand management. Suppose that the bought energy for
each hour is provided every 24 h by an aggregator. Then,equation (3)
can be used to generate the optimal price/penalty signal for periods of
24 h. For the first hour, by having B, and D,,,, in hand, (3) calculates
U,. The procedure continues until U,, is calculated. Then the price
signal [U,,U,, ..., U,,] is transferred to the controllers of the underlying
flexible assets which can then be used in their computations.

Solving the optimization problem (3) determines the best price, U,,
according to the given B;, D,, and the cost function J for each r. This
approach for generating optimal price signals is called sequential price
generation. This approach has low computational complexity and is an
appropriate approach when the computation time must be prioritized,
e.g., when generating the price signal for a large number of flexible
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assets with individual flexibility functions.

In the sequential approach, the price for the kth hour, U, is
calculated based on D,,;, and By, regardless of future values of D,
and B,. Since aggregators provide the information for N hours ahead,
all available data can be used in the decision-making. This is done by
reformulating the optimization problem as

N
inimi FF(U,, B,) - D -), 4
ng}]nmlljllfe ;J ( (U, B)) = Dy, “

which utilizes the whole N-hour ahead information on reference and
baseline demand and calculates the N-hour optimal price in one shot.
This approach for generating optimal price signals is called simultaneous
price generation. Different from the sequential price generation, the
computational complexity of the simultaneous price generation is high,
that is, it takes more time to calculate the optimal price signal using
the simultaneous approach. However, it leads to a better demand
side management with a lower error between FF(U,, B,) and D,,;,
t = {1,...,N}. This is due to the fact that the simultaneous approach
utilizes more information (N data points based decision making) while
the sequential approach utilizes 1 data point at a time for the decision
making and repeats this procedure for each hour (N times). Fig. 4
demonstrates the two optimization approaches.

Choosing an appropriate cost function (J) is important since this
influences the performance of the model predictive controller, and
consequently, the demand management. It is the designer’s choice to
use a proper cost function. Two of the most common cost functions are

the absolute value and quadratic functions, i.e. |FF(U,, B;) — D,.y,| and
(FFWU,,B)-D,, fx)z’ respectively [28]. The effect of choosing different
cost functions is demonstrated in Section 8.

In addition, secondary objectives and constraints can be added to
either (3) or (4) so that the controller can consider many different
problems from upper and lower levels of Smart Energy OS, as well
as energy management. These problems are discussed in the following
sections.

6. Benefits of using FF on grid balancing

Grid balancing can be beneficial from the employment of FF in
various ways. Among them are the aggregation of price-demand infor-
mation and ancillary services [29,30]. These concepts are described in
the following subsections.

6.1. FF for aggregating price-demand information

As given in (2), FF, as a mapping between price and the baseline
demand to the predicted demand, is capable of providing aggregated
information about the price-responsive energy system without any
requirement for extra communication channels in the Smart Energy OS
setup. This prominent information is required in different levels of the
Smart Energy OS from a neighborhood to a district, a city, or even a
wider area. Consequently, the setup offers a possibility for coherent
spatial hierarchies, such that the flexibility seen by e.g. at the TSO is
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Fig. 5. The existing vs. novel structures for the price generation considering ancillary services. The supply and demand curve is shown as a tool for electricity market price

determination, where P is the price per MWh and Q is the supply power.

coherent with the flexibility seen by the local DSO. By utilization of FF’s
demand prediction, DSOs, TSOs, and aggregators would benefit from
dynamics of demand variation at different hours of the day due to price
changes. Consequently, this leads to more efficient energy management
during future horizons in energy systems.

6.2. FF for ancillary services

Another important application of FF is to consider ancillary services
for the grid [22]. Ancillary services are the services for guaranteeing
equilibrium between supply and demand in an electricity grid [29,30].
The imbalance in the electricity grid occurs in voltage, frequency, etc.,
and should be compensated immediately. Employment of FF in the
Smart Energy OS equips the energy system with a tool for taking care
of these types of imbalances continuously.

This is possible by identifying a function mapping the demand
to voltage, frequency, etc. to be used in an optimization problem,
and then, finding an optimal price/penalty signal which is capable of
triggering a penalty-based controller. To this end, one may define the
optimization problem for voltage regulation as

minjmize J, (H(Y,) e fl) +Jy (U, ~ U,y ) , (5)
where Y, is the predicted demand, defined in (2), H is a function
mapping the demand to voltage, v, , is the reference voltage, and U,
is a nominal price. The first term, .J,, describes the cost of violating
the reference voltage, and the second term, J;;, introduces the cost
for deviating the price from its reference value. A similar optimization
problem can be introduced for frequency regulation.

The ancillary services using FF can be provided along with the
optimal price generation. This is done by integrating (3) and (5) as

minli]mize J (FF(U,, B,) — Dref,)
1

+ 7, (HOD = vyer, ) + Ty (U, = Usey,) ®

Different from (3) where the price signal is generated regardless of
the grid balancing requirements, this approach considers the grid bal-
ancing as well as minimizing the difference between the bought energy
(D,. f,) and the predicted demand (FF(U,, B,)). A similar optimization

problem can be introduced for frequency regulation.

Solving the optimization problems (5) and (6) finds the best price,
U,, sequentially. The simultaneous approach can also be used to gener-
ate the optimal price as

N
inimi FFU, B)-D )
minimize ;J ( (U, B) - D,y

+J, (H(Y,) - u,efl> +Jy (U, ~ U,y ) . @

The optimization problem formulations discussed in (5)—(7) require
information about the demand and voltage relationship. Another pos-
sibility would be to eliminate the demand and instead, find a dynamic
relation between the price and e.g. the voltage.

Fig. 5 demonstrates the existing vs. novel structures for the price
generation considering ancillary services. In the existing structure,
the electricity market is the main decision maker and price signal
generator. However, in the novel structure, each service operator is
equipped with an FF, based on the duties and regional constraints, and
they contribute to determining the price.

7. Benefits of using FF on the physical level performance

Using load shift at the low level of the Smart Energy OS, by e.g., heat
pump control has been studied for over a decade, both through simula-
tion [31] and hardware in the loop experiments [32]. While the main
application of the FF is demand prediction and energy management, it
is still possible to keep the performance and the thermal comfort at the
“low level” of the SE-OS [33]. This is done by employing the optimal
price generation approach along with an advanced controller like MPC,
which is capable of handling state and input constraints.

Another advantage of adopting the FF is related to the cost savings
that can be achieved. When using electricity for heating, e.g. through
the heat pump, the heat pump buffer storage can be efficiently used for
short load shifts. The monetary advantages are related to the variable
price of electricity. The end price of the energy is composed of the cost
of production, the cost of transportation, and the taxes and fees. As an
example, in the Greater Copenhagen Area, the end electricity price in
November-December 2023 varied between 0,15 Euros and 0,66 Euros
per kWh (source: watts.dk). In the same area, the cost of transportation
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Table 1
Comparison of sum of squares of error between D and D,,, regarding different cost
functions and optimization approaches.

Absolute value Quadratic

cost function cost function

Sequential approach 2.9 3.2
Simultaneous approach 0.32 0.19

in the winter season (October-March) is distributed as follows (source:
https://radiuselnet.dk):

» Low load tariff: 0,021 Euros per kWh between 0:00 and 6:00,
+ Peak load tariff: 0,18 Euros per kWh between 17:00 and 21:00,
+ High load tariff: 0,061 Euros per kWh at other times.

Time-varying electricity prices along with FF and an advanced con-
troller make it possible to sensibly reduce heating costs [34,35].

8. Simulation results

In this section, we first generate optimal price signals using different
cost functions, i.e. absolute value and quadratic, and different compu-
tational approaches, i.e. sequential and simultaneous, and then, use a
case study, where a generated price signal is employed for the energy
management system.

8.1. Optimal price generation results

The bottom panel of Fig. 6 demonstrates the optimal price signal
generated using the sequential approach with absolute value objective
function, such that the difference between the reference and the pre-
dicted demand diminishes (see the top panel). It is seen that the penalty
is higher when they are apart from each other. The results for one week
are provided in Fig. 7 to show the price variations in a longer period.
The simultaneous approach is utilized with absolute value cost function
in Fig. 8. Similar to the sequential approach, the generated price is high
when D and D,,, have different values. Different from the sequential
approach, where the penalty fluctuations are high, the range of change
of penalty is smaller. Fig. 9 demonstrates the results for a longer period.

Fig. 10 shows the results of the sequential approach for price
generation using the quadratic cost function. The top panel illustrates
the reference and the predicted demand for 24 h. The bottom panel
provides the generated optimal price signal. The results for five days
are also observed in Fig. 11. Finally, the results of employing the
simultaneous approach with the quadratic cost function for one day
and five days are given in Figs. 12 and 13, respectively.

By comparing Figs. 6-13, it is seen that different cost functions and
different optimization approaches lead to different price signals. For
example, depending on the application, it may be desired to employ a
price signal with fewer fluctuations. Then, the simultaneous approach
with absolute value should be selected. The sum of squares of error
between D and D, is another factor for selecting the price generation
method. Table 1 compares this factor for different cost functions and
optimization approaches. It is seen that the simultaneous approach,
which considered N data points, dramatically reduces the sum of
squares of error values. Another factor is the penalty signal values.

8.2. HVAC system control for the demand-side management

As a case study to demonstrate the effectiveness of the optimal
price signal for demand-side management, we use the data of a new
development in Fredrikstad, Norway. It is the largest development of
plus energy houses in Norway and has a strong focus on energy sharing
and flexibility in the neighborhood [35,36]. Due to the high flexibility
potential of the HVAC system, we aim to control the HVAC system via
an advanced controller.
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The HVAC system in this neighborhood is simplified and provided
in Fig. 18. As can be seen in Fig. 18, the HVAC system consists of a
heat pump and a storage tank. The heat pump generates the required
thermal demand, and the storage tank stores an enormous amount of
hot water for the building. A model predictive controller (MPC) has
been developed to control the storage tank temperature while taking
the demand-side management into account. The controller is equipped
with a dynamic model of thermal dynamics to predict the future evolu-
tions of the thermal system. To this end, a grey-box model is identified
from a bank of data generated by a white-box model representing the
thermal dynamics of the neighborhood [37]. In addition, MPC requires
a price/penalty signal to handle the demand-side management. In this
study, the four price signals, generated in the previous subsection, are
employed in MPC design.

Simulation results demonstrating the efficacy of the employed con-
troller with optimal penalty signal generation are provided in Figs. 14—
17.In these figures, the top panel shows the water temperature of the
top and bottom of the tank. The second panel shows the electricity
consumption to heat the water temperature in the tank. The ambient
temperature is provided in the third panel. The requested load of
the tank and the optimal penalty signal are shown in the fourth and
fifth panels, respectively. It is noted that the heat generated by the
heat pump serves as the input to the tank, while the requested heat
represents the output from the tank. It is observed that the controller
shifts the demand to the periods when the penalty signal is lower. The
variation in generated price signals results in distinct patterns of heat
pump electricity consumption, which in turn produce differing storage
tank temperature trajectories.

Another approach to evaluate the price signals is by assessing
their impact on control performance. In this study, we employ three
performance metrics:

» Average absolute control effort:
N
1
AACE = Z‘ |1,

where u represents the price-responsive heat pump electricity
consumption.

Flexibility index [22]:

Z{V C; XU

Z,{L ¢ X #; ,

where c is the price signal, and # denotes the price-unresponsive

heat pump electricity consumption.
Mean absolute error:

FI=1-

N
1 2
MAE = N g(xi _xref,) >

where x is the water temperature at the top of the storage
tank, and x,,, is the reference temperature, set at 55 °C for this
formula.

The first metric evaluates the control effort, essentially quantifying the
magnitude of the control commands. The second metric compares the
control efforts under price-responsive and price-unresponsive scenarios,
reflecting the controller’s ability to shift demand. The third metric
assesses the controller’s tracking performance. Table 2 compares the
above-mentioned metrics for each price signal. The results show that
the sequential approach results in a higher control effort, while the
simultaneous approach with the quadratic cost function achieves the
lowest control effort. In terms of flexibility indices (FIs), the simul-
taneous approach with the quadratic cost function demonstrates the
highest capability for demand shifting. However, tracking performance
is best achieved with the simultaneous approach using the absolute
value cost function, although it yields the lowest FI. Overall, the price
signal generated by the simultaneous approach with the quadratic cost
function has the most favorable impact on the controller in this case
study.
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Fig. 6. Sequential optimal price generation with absolute value objective function. The top panel shows the reference and the actual demand for 24 h. The bottom panel shows
the optimal price signal.
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Fig. 7. Sequential optimal price generation with absolute value objective function. The top panel shows the reference and the actual demand throughout five days. The bottom
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Fig. 8. Simultaneous optimal price generation with absolute value objective function. The top panel shows the reference and the actual demand for 24 h. The bottom panel shows
the optimal price signal.
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Fig. 9. Simultaneous optimal price generation with absolute value objective function. The top panel shows the reference and the actual demand throughout five days. The bottom
panel shows the optimal price signal.
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Fig. 10. Sequential optimal price generation with quadratic objective function. The top panel shows the reference and the actual demand for 24 h. The bottom panel shows the
optimal price signal.
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Fig. 11. Sequential optimal price generation with quadratic objective function. The top panel shows the reference and the actual demand throughout five days. The bottom panel
shows the optimal price signal.
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Fig. 13. Simultaneous optimal price generation with quadratic objective function. The top panel shows the reference and the actual demand throughout five days. The bottom

panel shows the optimal price signal.

Table 2
Comparison of the impact of price signal on control performance.
AACE FI MAE
Sequential, absolute value 0.3239 38.8% 1.4354
Sequential, quadratic 0.3240 39.2% 1.4564
Simultaneous, absolute value 0.3238 24.8% 1.2252
Simultaneous, quadratic 0.3225 40.1% 1.5139

9. Outlook

In this paper, we have focused on the use of FFs for computing
electricity prices. However, it is also intended to be applicable to other
energy demands and in this section, we will describe how we believe
that it can be used to integrate power grids with district heating grids.
In a district heating grid, a central heat plant or combined heat and
power plant heats up water which is distributed to residential, commer-
cial, and industrial consumers through a grid of insulated pipes [38].
The heat can be generated using biomass combustion, waste incin-
eration, industrial waste heat (e.g., from data centers or the process
industry), renewable energy sources (wind, solar, geothermal, etc.),
fossil fuels (such as gas, oil, and coal), or nuclear power.

District heating grids themselves constitute flexible assets that can
be used for load shifting and ancillary services in power grids [39].
Surplus power production can be used by booster heat pumps to
generate heat that can be stored using heat accumulators (for hours
or days) or pit thermal energy storage (PTES) solutions (for months
or entire seasons). If heat is generated using combined heat and power
plants (CHPs), which are common in Denmark [40], the district heating
grid will be even more flexible due to surplus heat generation when
the electricity price is low and the power generation (typically) is
high. Furthermore, as district cooling generates significant amounts
of heat [41], there is also significant potential in combining them
with district heating grids. Such combined grids are the focus of fifth
generation district heating and cooling grids [42], which also involves
low-temperature district heating and high-temperature district cooling.
As the FF quantifies demand-price relationships, we believe that it can
also quantify the flexibility of large-scale flexible assets such as district
heating (and cooling) grids.

Additionally, district heating consumers can be flexible with re-
spect to both their power and heat demand. However, in conventional
markets, it is not possible to offer this flexibility in both markets
simultaneously. In contrast, in the Smart Energy OS, a FF would be
identified for both the power and heat demand and the optimization-
based approach described in this paper can be used to generate separate
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electricity and heat price signals in order to indirectly control both
demands. As both the power and heat consumption are envisioned
to be managed automatically by a smart energy management system
(e.g., based on economic MPC), it is technically feasible to account for
both prices at the same time. By exploiting this flexibility and predict-
ing the heat demand, we believe that it is possible to reduce the supply
temperature and thereby also reduce the heat losses in the district
heating grid. See [43] for a discussion of motivation tariffs for district
heating consumers and how they should be implemented to lower the
supply temperature. Finally, for lower supply temperatures, more types
of heat sources can be used, which enables a higher degree of sector
coupling, i.e., a higher level of industrial waste heat utilization.

10. Summary

In this work, the hierarchical structure of the Smart Energy OS
along with its main components, from the market level to the physical
level, have been introduced. Nonlinear FF and demand predictability
have also been described. Furthermore, optimization problems with
different formulations, i.e. sequential and simultaneous, are proposed
for optimal price signal generation. The benefits of employing FF
on grid balancing through aggregating price-demand information and
ancillary services have also been introduced. These results have been
extended to consider optimal price generation as well as providing
ancillary services. Moreover, the benefits of FF on the physical level
(low level) of the energy system performance have been discussed.
The possibility of deployment of FF for the district heating grids has
also been discussed. The simulation results established in this paper
demonstrate the efficiency of utilizing FF for demand-side management
as well as its capability for linking the market and physical levels of
Smart Energy OS.

11. Conclusion

This study presents and evaluates two approaches for generating
optimal price signals: the sequential approach and the simultaneous
approach. Each method offers distinct advantages and trade-offs. The
sequential approach is computationally simpler and faster, whereas the
simultaneous approach can achieve a better solution by considering the
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entire range of the reference demand. Additionally, two commonly used
cost functions, absolute value and quadratic, are employed to generate
price signals, with the performance assessed using two metrics: the sum
of squared errors between D and D,,,, and the sum of penalty signals.

The study further explores the impact of incorporating penalty
signals into Model Predictive Control (MPC) design, using AACE, FI,
and MAE metrics to evaluate control effort, demand-shifting capabil-
ity, and tracking performance, respectively. Results indicate that the
simultaneous approach with the quadratic cost function delivers the
best performance in terms of minimizing control effort and maximizing
demand-shifting capability. However, for tracking performance, the
simultaneous approach with the absolute value cost function proves to
be the most effective.

These findings highlight the trade-offs between computational com-
plexity, optimization accuracy, and control performance, offering valu-
able insights into the design and implementation of price-based control
strategies in energy systems.
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