
R E S E A R CH A R T I C L E

Reconciliation of wind power forecasts in spatial hierarchies

Mads E. Hansen1,2 | Nystrup Peter1,3 | Jan K. Møller1 | Madsen Henrik1

1DTU Compute, Technical University of

Denmark, Lyngby, Denmark

2ENFOR A/S, Holte, Denmark

3QUENT ApS, Hellerup, Denmark

Correspondence

Mads E. Hansen

Email: s174434@win.dtu.dk

Present address

Mads E. Hansen, Danmarks Tekniske

Universitet, Asmussens Alle, Building 303B,

2800 Kgs., Lyngby, Denmark.

Funding information

ARV, Grant/Award Number: 101036723;

ebalance-plus, Grant/Award Number: 864283;

Flexible Energy Denmark (FED), Grant/Award

Number: IFD 8090-00069B; IEA Wind Task

36, Grant/Award Number: EUDP 64018-0515;

IEA Wind Task 51, Grant/Award Number:

EUDP 134-22015; Sustainable plus energy

neighbourhoods (syn.ikia), Grant/Award

Number: 869918

Summary

We consider reconciliation of wind power forecasts in a spatial hierarchy with three

aggregation levels. We produce base forecasts for the bottom level consisting of

407 substations (connection points for local groups of wind turbines). State-of-the-

art forecasts from a commercial forecast provider are available for the middle and

top levels, which consist of 15 regions and the entire Western Denmark (DK1),

respectively. We find that the accuracy of the total forecast can be improved through

spatial reconciliation, even with a relatively simple model used at the lowest level of

the hierarchy. Computing the base forecasts for the substations using wind speed as

the only predictor, the RMSE of the DK1 forecast is reduced by 20.5%, while the

RMSE of the regional forecasts is reduced by 4.7%, on average, through reconcilia-

tion. The increase in accuracy is partly due to reduced errors in the individual regional

forecasts and partly due to reduced residual correlation between the reconciled

regional forecasts. We test adaptive estimation of the covariance matrix of the base

forecast errors and find that it has a limited impact on the accuracy, hinting toward a

time-stable covariance structure.
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1 | INTRODUCTION

The development of renewable energy sources is increasing all over the world. In Denmark, the majority of electricity already comes from renew-

able energy sources. The Danish transmission system operator (TSO) Energinet expects wind power alone to account for 59% of the electricity

production in Denmark in 2022.1 In order to manage a power system where more than half of the power generation is dependent on the weather,

the TSO requires accurate and reliable production forecasts. Spodniak2 showed that there is a direct link between wind power forecast errors and

spreads in electricity prices in Denmark. Consequently, the development of new methods to improve power production forecasts is necessary to

ensure affordable and clean energy.

An efficient implementation of the future low-carbon energy system requires electricity demand to follow the weather-driven energy produc-

tion at all scales of the power system. This implies that forecasting techniques will play an important role for both market participants and system

operators. The trend toward more decentralized production, which is often integrated at low-voltage levels, means that distribution system opera-

tors (DSOs) need to have more focus on forecasting renewable production, for example, to keep the voltage within appropriate limits or to ensure

that the temperature of transformers do not exceed critical limits. The future calls for more coordination between the low- and high-voltage sys-

tem operators, and consequently, there is a need for coherence between actions taken by TSO and DSOs, who operate at different spatial scales.
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Anyone who has dealt with forecasts in decision-making knows that in many situations there can be multiple different forecasts for the same

variable. This comes down to the way the forecasts were generated. It leads to a natural desire to reconcile forecasts, such that they become

coherent. In the context of forecast reconciliation, coherency refers to forecasts from different levels of a hierarchy being consistent with each

other.3 For example, if we have a wind power forecast for a certain region, the sum of the forecasts for the individual turbines within that region

should align with the forecast for the region as a whole. Reconciliation is the process of adjusting or combining forecasts in order to ensure coher-

ency across all levels of a hierarchy. This can involve adjusting the individual forecasts to align with the aggregate forecasts, or combining multiple

forecasts in a way that takes into account the hierarchical structure.

A hierarchy is a way of organizing information into different levels, with each level representing an aggregation of information from the level

below. We focus on forecasts that can be divided into a hierarchical structure defined by linear constraints. Such structure can be either spatial/struc-

tural, temporal, or spatio-temporal. A hierarchical structure is useful when information is available with multiple resolutions. Even when only one spe-

cific resolution is of interest, by utilizing information from other aggregation levels, it might be possible to obtain better forecasts across all levels.

Grunfeld4 argued that the best approach to solving a forecasting problem that can be divided into a hierarchical structure is to generate a

model for the grand total, that is, the top level of the hierarchy, and divide that into subtotals using a top-down approach. Another approach is to

generate individual forecasts at the lowest level and aggregate them. Using the bottom-up method, forecasts for higher aggregation levels are the

sum of the relevant bottom-level forecasts. Many argue for the superiority of the bottom-up approach because information is lost when looking

directly at the higher aggregation levels. Schwarzkopf5 looked at the differences between top-down and bottom-up and found that bottom-up in

general is more robust, at least if the data at the lowest aggregation level is reliable.

It can be difficult to decide whether to use a top-down or bottom-up approach. Depending on the scenario, forecasts at different aggregation

levels might capture different phenomena in the data. Hyndman6 argued that generating forecasts independently across all aggregation levels and

reconciling them afterwards produces optimal forecasts. Specifically, they minimized the total squared coherency error with equal weighting

across all levels. They found that this method is better than both top-down and bottom-up. Mathematically this method corresponds to solving

an ordinary least squares (OLS) problem.

Athanasopoulos7 extended this work. They argued that solving an OLS problem might not lead to the optimal solution. They presented differ-

ent ideas for how to weight the coherency errors, effectively solving a weighted least squares (WLS) problem. One possibility is to use the

observed variance of the base forecast residuals at the different aggregation levels as weights when reconciling.

Nystrup8 formulated the reconciliation problem as a generalized least squares (GLS) problem. They argued that the OLS and WLS approaches

are both special cases of GLS, where all off-diagonal elements of the covariance matrix are zero. They showed that it is worthwhile to include

residual correlation within the aggregation levels and cross-correlation between forecast errors from different aggregation levels.

Bergsteinsson9 used adaptive estimation of the covariance matrix to improve heat load forecasts through reconciliation. They were the first

to include commercial state-of-the-art forecasts for the bottom level and base forecasts based on numerical weather predictions (NWPs) for the

other levels of their temporal hierarchy.

Several studies have considered reconciliation of wind power forecasts. Zhang10 proposed a least-squares-based reconciliation method for

wind power forecasts that can be divided into aggregates based on geography and network structures. They constructed a spatial hierarchy and

formulated an optimization problem to minimize RMSE of the coherency errors, that is, the differences between the reconciled forecasts that

respect the hierarchical constraints and the original base forecasts. They used AR models to generate base forecasts, as their focus was on very

short forecast horizons (10–60 min). They found that reconciliation using the full covariance matrix produced the best results.

Jeon11 introduced a method for reconciling probabilistic forecasts in temporal hierarchies. Their focus was on reconciliation and evaluation of

probabilistic wind power forecasts for two wind farms in Greece. They considered forecast horizons up to 24 h ahead and produced base fore-

casts with data-driven time series models such as ARMA and GARCH. They showed the benefits of temporal reconciliation of probabilistic fore-

casts with the biggest improvements occurring at the highest levels of the hierarchy.

Modica12 proposed a recursive and adaptive multivariate least squares estimator for online reconciliation of wind power forecasts. Similar to

our study, they evaluated their method using wind power measurements from wind farms in Western Denmark. They divided 349 wind farms into

four regions with 25 wind farms in each region, which is different from the spatial hierarchy that we consider. Furthermore, since they focused on

online reconciliation, they only considered a 15-min forecast horizon and produced base forecasts for all nodes in the hierarchy using

AR(2) models.

In this paper, we consider an application of reconciliation to state-of-the-art hierarchical forecasts of wind power production intended for the

day-ahead market. Our focus is on reconciling wind power production forecasts on horizons beyond 24 h, which presents a different challenge

from previous studies. Bai13 also used state-of-the-art wind power production forecasts for spatial reconciliation; however, their focus was on the

optimization part itself and, specifically, how to perform reconciliation using the Alternating Direction Method of Multipliers in a distributed setup.

In contrast, we consider an offline setup where base forecasts are generated based on NWPs rather than time series models without exogenous

explanatory variables.

We consider wind power production from onshore wind turbines in Western Denmark, which consists of 15 regions and 407 substations.

Our goal is to leverage data for the substations to improve commercial, state-of-the-art forecasts at the regional and total levels. Fitting complex,
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individual models to each substation would be cumbersome given the number of substations. Furthermore, this would make the computation of

the regional and total forecasts much more demanding.

Our contribution is to present a method that allows us to utilize localized substation data efficiently and meaningfully with a low computa-

tional burden. For this purpose, we propose to construct simple base forecasts for the individual substations based on local NWPs and reconcile

them with the state-of-the-art regional and total forecasts in a three-level spatial hierarchy. We are among the first to investigate spatial reconcili-

ation of hierarchical wind power production forecasts that are based on NWPs. Moreover, we are the first to include and compare with state-of-

the-art wind power production forecasts in the context of forecast reconciliation. We implement and investigate methods for recursive and adap-

tive estimation of the reconciliation weights. Finally, we perform a residual analysis of the reconciled forecasts and discuss the accuracy improve-

ments and their origin.

The outline of this paper is as follows. In Section 2, we present the data for the spatial hierarchy; we show examples of the state-of-the-art

base forecasts and produce base forecasts for the lowest level of the hierarchy. In Section 3, we introduce reconciliation of hierarchical forecasts,

discuss several ways to weight the elements in the hierarchy, and present different ways to estimate the covariance of the base forecasts errors.

In Section 4, we show the performance improvements achieved by forecast reconciliation and perform residual analysis. We discuss our findings

in Section 5 and conclude the paper in Section 6.

2 | DATA AND BASE FORECASTS

We consider hourly settlement data for wind power production from onshore wind turbines in Western Denmark (DK1). The data were made

available by ENFOR A/S, which is a Danish company that provides forecasts to the Danish TSO and some DSOs. We have settlement data for all

substations (small local groups of wind turbines) in DK1, regional forecasts (partly aggregated), and state-of-the-art total and regional forecasts.

By state-of-the-art we mean widely used operational forecasts. For an extensive review of what this entails, see, for example, Sørensen.14 Addi-

tionally, we have hourly high-resolution (9km�9km) NWPs from the European Centre for Medium-Range Weather Forecasts (ECMWF). Specifi-

cally, we have wind speed and temperature forecasts at 100 m. The operational delay in the settlement data is around 10 days, meaning that the

data are available 10 days after the settlement date. The delay in NWPs is expected to be 7–9 h. We focus on forecasts for the day-ahead (also

known as the spot) market. Thus, before noon on any given day, we want to produce hourly forecasts for the next day.

Figure 1A shows the location of the electricity substations and their regional division. The red dots in the figure represent the substations in

DK1. We do not consider the substations in the price area in Eastern Denmark (DK2). We consider a three-level spatial hierarchy consisting of

F IGURE 1 (A) Map of Denmark showing the locations of the individual power substations and regions. (B) Illustration of the spatial hierarchy
for the western price area DK1 with 15 regions at the middle level and 407 individual substations at the bottom level.

HANSEN ET AL. 617

 10991824, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2819 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [23/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the total DK1, the 15 regions, and the 407 substations. Figure 1B shows a graphical illustration of this hierarchy. The total and regional forecasts

are from the commercial provider, whereas we construct base forecasts for the substations.

2.1 | Total

We consider the total forecast for DK1 to be the most important and will emphasize the accuracy of this in our study. The reason is that the resid-

uals are directly linked to the power deficit/surplus in the price area, which is important to market participants because it can lead to up or down

regulation. The total forecasts for DK1 are generated using publicly available data* for wind power production and ECMWF high-resolution NWPs

as input variables. We have these forecasts from mid-2018 to end-2020.

Figure 2 compares measurements, base forecasts, and aggregates at the different levels of the hierarchy for a one-week period in the spring

of 2019. The data varies both in terms of scale and time series features across the levels of the hierarchy. The total forecasts for DK1 in

Figure 2A follow the measurements relatively well, except for the peak in the afternoon on March 6 and March 12 where the aggregated regional

and station forecasts seem to do better.

The fundamental difference between these forecasts is the granularity of the data they are based on. The bottom-level forecasts can capture

more fine-grained variations in the data but may be more prone to noise and errors. The aggregated forecasts may miss some of the fine-grained

variations but are generally more stable. At the most aggregate total level, the measurements and base forecasts are more smooth compared to

the lower levels. Naturally, as we move down the hierarchy, the signal-to-noise ratio decreases. Yet, there is a fairly strong resemblance between

the data for DK1, Region 1, and even the two substations. This indicates that the weather conditions are fairly similar throughout the area, which

makes sense given the limited geographical extent of Western Denmark.

2.2 | Regions

The DK1 price area is divided into 15 regions by the TSO, as seen in Figure 1A. Region 1 is the most northern while regions 14 and 15 are on the

southern boarder to Germany. Although the individual regional deviations do not lead to up or down regulation in the price area, they do serve a

meaningful purpose for the TSO. As implied by Figure 1A, the wind turbines are not uniformly distributed across the area, nor is the electricity

consumption. Hence, there can be distributional challenges within the price area. Accurate regional forecasts are helpful in alleviating or

preventing some of these distributional challenges. This becomes increasingly relevant as the fraction of power production coming from renew-

ables increases.

For each region, we have hourly settlement data, that is, the confirmed production. There are no onshore wind turbines outside these

15 regions in DK1. Furthermore, we have state-of-the-art hourly regional forecasts generated using ECMWF's high-resolution NWPs. Both settle-

ment data and forecasts are available from mid-2018 to end-2020.

Figure 2B shows measurements and base forecasts for the first of the 15 regions in DK1. We see that the forecasts follow the

measurements relatively well, although the deviations are slightly larger than what we saw for DK1. Specifically, the normalized root mean square

error (NRMSE) for DK1 is 0.058, while it is 0.100 for Region 1. Both estimates are based on the entire period and not just the period shown in

the figures.

2.3 | Stations

Finally, we have data for all of the 407 substations that connect wind turbines to the electricity grid in DK1. For each substation, we have

settlement data and the exact coordinates of the station from which it can be assigned to a region. These data are available from end-2017 to

end-2020. We are not provided with forecasts for the individual substations and will therefore make these ourselves.

When generating station forecasts, we train a model using data from the first half of 2018 and use this model to generate forecasts for the

second half of 2018. We then train a model using all data from 2018 and use this to generate forecasts for 2019. Finally, we train a model on all

data from 2019 and use this model to generate forecasts for 2020. Figure 3 shows a graphical representation of when the data are available

and what it is used for. Note that the burn-in period is related to the estimation of the covariance of the base forecast errors described

in Section 4.

*https://www.energidataservice.dk/tso-electricity/productionconsumptionsettlement.
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2.3.1 | Station model

Giebel,15 Lange,16 and Pinson17 discussed how to forecast wind power production. The consensus is that a physical model that predicts wind

power based on weather predictions is a key component. Wind power production is related to wind speed by a nonlinear function called the

F IGURE 3 Timeline of data and forecast availability. “Station train (2018)” denotes the training data used for fitting the model used for
generating forecasts for year 2018 and so on. The burn-in period is the data used for the initial covariance estimates.

F IGURE 2 Wind power production and base forecasts at the different levels of the hierarchy for a week in the spring of 2019. The dashed

vertical lines show the shift between days.
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power curve. Further, they all discussed the use of statistical models, that is, models that only rely on power production data, such as ARIMA

models. They found that the statistical models can be beneficial, especially on short horizons (30 min to 6 h). For the day-ahead horizon that we

consider, it generally makes sense to use a combination of statistical and physical models according to, for example, Costa18 and Soman.19

Pinson17 discussed how to predict the output from a wind turbine based on NWPs by modeling it as a physical system. We know from phys-

ics that the total amount of energy that flows by a wind turbine can be expressed as

Ptotal ¼1
2
ρπR2v3, ð1Þ

where ρ is the density of the air, R is the specific gas constant for air, and v is the wind speed. However, the turbine cannot extract all of the

energy from the air. In fact, the theoretical upper limit is given by Betz's limit at Cp ¼ 16
27. In practice, due largely to cost-efficiency, this number is

much lower for commercial wind turbines. We note that the air density, ρ, through the ideal gas law is proportional to the inverse of the tempera-

ture, T. This leads to the physical relation

Pturbine / v3

T
: ð2Þ

In reality, the power production from wind turbines does not follow this relation as nicely as we would want. First, wind turbines need a cer-

tain amount of wind to be able to produce any power, known as the “cut-in” speed. Second, they have a maximum capacity that is limited by

many factors, including the design of the generator and other parts of the turbines. Third, if the wind speed gets too high, the wind turbine will

come to a complete stop to prevent it from being damaged; this is known as its “cut-out” speed.20 Pinson17 discussed the advantages of using

nonparametric regression to estimate the power curve. They found that this approach is often advantageous compared to a linear model with

input given by the physical relation. Xu21 further discussed this. Specifically, they suggested the use of local polynomial regression (LPR). Nielsen22

were among the first to model the power curve rather then using the physical relation given in Equation (2). In an offline setup, they used

weighted least squares estimates with a weighting defined by a tricube kernel, that is, LPR.

We have NWPs whose computations are initialized at 00:00. These are available to us shortly after the computations are completed, which

usually takes around 7.5 h. Since our focus is day-ahead, we use the NWPs initialized at 00:00 to generate forecasts 24–48 h into the future from

that point. As we are modeling an offline setup and our forecast horizon is more than 6 h, we focus on time-invariant models using NWPs, as dis-

cussed by Costa,18 Soman,19 and later by Pinson.17 As NWPs, we use ECMWF HRES at the grid point that is closest (i.e., has the minimal Euclid-

ean distance) to the substation.

Regarding model selection, we have tested a number of different approaches including simple linear models. Based on the performance of

these methods, and since this is not the main focus of this paper, we limit ourselves to using LPR as described in Madsen23 and specifically for

wind power forecasting by Nielsen.22 The LPR estimates are given by

Yt ¼PðXt,θðXtÞÞþεt, ð3Þ

where P is a polynomial of arbitrary degree and θ are the locally estimated parameters that depend on the value of Xt. The parameters

are found as

θ̂ðXtÞ¼ arg min
θðXtÞ

1
N

XN
s¼1

WðXt,XsÞðYs�PðXs,θðXsÞÞ2, ð4Þ

where the kernel W describes how the residuals are weighted and N is the number of observations in the training data.

We consider the following three models for forecasting using NWPs:

Model 1: LPR on wind speed only.

Model 2: LPR on wind speed and horizon.

Model 3: LPR on wind speed, horizon, and temperature.

We use the R-function loess for LPR. We use it with a tricube kernel, additive (no mixed terms) second degree polynomials, and a nearest

neighbor bandwidth (width of kernel) with span parameter of 0.4. This means that for each new point, second degree polynomials are fitted with

weights given by the tricube kernel with a bandwidth corresponding to 40% of the data being used in all dimensions.

620 HANSEN ET AL.
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Other potential covariates that could be included in the model include wind direction, air density, and atmospheric pressure. These covariates

were not included in this forecast model, because the focus of this paper is to investigate the effects of spatial hierarchies and not to find the best

possible station model.

Table 1 shows the NRMSE for the three models. It also shows the relative differences to model 1, with differences smaller than zero indicat-

ing a more accurate model. The differences are larger in sample than out of sample. The most complex model has a NRMSE that is 4.9% lower

than the simplest model out of sample.

Figure 4 shows examples of fits using the loess function with one and two input parameters. Figure 4B shows a 2d fit using LPR. Along the

wind speed direction, the curve resembles the power curve in Figure 4A. Air is less dense at higher temperatures, which primarily impacts the

curve at high wind speeds. The power curve in Figure 4A with wind speed as the only predictor corresponds to Model 1. Figure 2C,D shows

examples of base forecasts for stations 1 and 2 using this model. If we compare the forecast accuracy with the regional and total forecasts, we

see that these have the largest residuals relatively speaking, that is, the largest normalized errors. The base forecasts for the two substations look

very different, with the base forecasts for Station 1 being much more smooth than that for Station 2. This is because they are not located in the

same place within the region, and hence, the NWPs are different. Additionally, differences between substations are due to differences between

specific types of turbines and differences in the surrounding terrain.

3 | FORECAST RECONCILIATION

We follow the notation proposed by Athanasopoulos.7 We define base forecasts as forecasts made directly on the data from the same aggrega-

tion level. Let ŷ½si �t denote the base forecast for station i at time t, ŷ
½rj �
t the regional forecast for region j at time t, and ŷ½tot�t the total forecast for

DK1 at time t. Let us then define a vector, ŷt, given by

TABLE 1 Accuracy of substation models using local polynomial regression and relative differences out of sample.

Model In-sample NRMSE Out-of-sample NRMSE Out-of-sample relative difference

Model 1 0.1047 0.1124 0%

Model 2 0.1030 0.1112 �1.1%

Model 3 0.1017 0.1069 �4.9%

F IGURE 4 Illustrations of local polynomial regression with one and two input parameters.
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ŷt ¼ ½ŷ½tot�t , ŷ½r1 �t , ŷ½r2 �t , ŷ½s1 �t ,…, ŷ½s5 �t �T : ð5Þ

Drawing on work done by Hyndman,6 we define a summation matrix with columns representing the lowest aggregation level in the hierarchy

and rows the aggregation given in the same order as in ŷt. Let n denote the number of base forecasts, that is, the sum of the number of stations

and regions plus one (for the total). Let m denote the number of stations. Let us consider an example that corresponds to a hierarchy with two

regions with three and two stations, respectively, then n¼8,m¼5, and

Sðn�mÞ ¼

1 1 1 1 1

1 1 1 0 0

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
66666666666664

3
77777777777775
: ð6Þ

We define a reconciled forecast, ~yt, to be a forecast that respects the hierarchical structure; that is, the forecast for Region 1 equals the sum

of the forecasts for the first three stations, and so on. Next, we define an auxiliary matrix, Gðm�nÞ, that extracts the forecasts for the bottom level

from ~yt:

Gðm�nÞ ¼ ½0ðm�ðn�mÞÞjIðm�mÞ�: ð7Þ

The structural constraint imposed by the hierarchy can now be written as

~yt ¼ SG~yt: ð8Þ

Reconciliation is needed when base forecasts ŷt do not satisfy this constraint. Naturally, this can be done in many ways and comes down to

assumptions about the errors in the individual forecasts. In this paper, we assume that the coherency errors, εt ¼ ~yt� ŷt, have mean zero and are

homoscedastic. Therefore, it makes sense to view the reconciliation problem as a regression problem

ŷt ¼ Sβtþεt, ð9Þ

where the parameter βt is the bottom-level reconciled forecasts, ½~y½s1 �t ,…, ~y½s5 �t �T .
Nystrup8 used generalized least squares (GLS) to solve this regression problem; notice this implies potential correlation between coherency

errors:

argmin
~yt

ð~yt� ŷtÞTΣ�1ð~yt� ŷtÞ ð10Þ

where ~yt ¼ SG~yt: ð11Þ

Here, Σ describes the variance of the coherency error. Wickramasuriya3 showed that in general Σ is not identifiable. However, they also pro-

vided theoretical justification for using the base forecast errors, et ¼ yt� ŷt, as a proxy. For reasonable models, this is always identifiable, but it

can be demanding to compute. Note that this regression approach aims to adjust the base forecast in such a way that the hierarchical structure is

respected while maximizing the likelihood of the the necessary adjustments, where the likelihood of the adjustments is found under the assump-

tion of normality in the base forecast errors.

Nystrup8 showed that the closed-form solution to the optimization problem is given by

~yt ¼ SðSTΣ�1SÞ�1
STΣ�1ŷt: ð12Þ

This allows us to easily compute the reconciled forecast that minimizes the objective function, Equation (10), without the need for any com-

plicated iterative approach. Boyd24 showed that when the dimension of the problem is very large, it can be faster to solve it using an iterative
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method. Wickramasuriya3 argued that due to the structure of Σ, it will often be numerically close to singular. As a consequence, they argued that

using the Monroe pseudo inverse instead of the inverse would be advantageous. Additionally, since we are required to use the inverse of Σ, it can

be advantageous to update the inverse directly using the matrix inversion lemma, depending on the frequency of the updates.

3.1 | Structure of Σ

The problem of forecast reconciliation comes down to finding the best estimate of the covariance of the coherency errors, Σ. Unfortunately, this

is not necessarily a trivial task. The simplest estimate is to assume an identity matrix, Σ¼ I. This was proposed by Hyndman6 and is equivalent to

assuming that the coherency errors are independent with uniform variance across the aggregation levels.

Athanasopoulos7 proposed three different approaches, which correspond to three variations of the diagonal estimates of Σ. The

first approach, known as structural variance scaling, is to weigh the lowest aggregation level by one, and each higher aggregation level by the

number of units it consists of. In other words, Σ is approximated as the row sums of the summation matrix, S. In our small example from before,

this would be

Σstruc ¼ diagð5,3,2,1,…,1Þ: ð13Þ

The advantage of this method is that it does not require any estimation of Σ. In the specific case of this paper, this approach would most likely

produce bad results, since it assumes uniformity in the coherency errors of the substations. To adjust for differences in the sizes of the substa-

tions, you would need to rescale by the number of turbines or the installed capacity of each substation.

The second approach is known as series variance scaling. The idea here is to use pooled variance estimates for each aggregation level as

weights:

Σseries ¼ diagðσ2tot,σ2r ,σ2r ,σ2s ,…,σ2s Þ: ð14Þ

Again, it is unlikely that this approach would produce good results for the spatial hierarchy for DK1, since the variance of, for example, the

substations, which are of different sizes, would be pooled. However, it could make sense to compute the normalized errors and pool these, and

then rescale by the installed capacity afterwards.

The third approach is known as hierarchical variance scaling and is an extension of series variance scaling, where the individual variance esti-

mates are used instead of pooling them by aggregation level:

Σhier ¼ diagðσ2tot,σ2r1 ,σ2r2 ,σ2s1 ,…,σ2s5 Þ: ð15Þ

All the diagonal approximations assume independence between forecast errors. Naturally, this assumption is not always reasonable. There-

fore, Nystrup8 proposed methods with nonzero values for some/all of the off-diagonal elements as well.

The first idea is to assume that the errors follow a Markov process. In temporal hierarchies, this seems quite natural. In spatial hierarchies, it

corresponds to assuming that any forecast error is independent from all other stations than its immediate neighbors. Based on this idea, it is possi-

ble to formulate a Markovian correlation structure.

A slightly more advanced approach is to use block estimates of the covariance matrix. A natural block structure is to estimate the covariance

within the aggregation levels. This would result in the covariance structure given below:

Σwithin ¼

σ2tot 0 0 0 0 … 0

0 σ2r1 σr1,r2 0 0 … 0

0 σr1,r2 σ2r2 0 0 … 0

0 0 0 σ2s1 σs1,s2 … σs1,s5

0 0 0 σs1,s2
. .
. ..

.

..

. ..
. ..

. ..
.

σ2s4 σs4,s5

0 0 0 σs1,s5 … σs4,s5 σ2s5

2
666666666666664

3
777777777777775

: ð16Þ

Finally, we can use the entire cross-covariance matrix

HANSEN ET AL. 623
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Σcross ¼

σ2tot σtot,r1 σtot,r2 σtot,s1 σtot,s2 … σtot,s5
σtot,r1 σ2r1 σr1,r2 σr1,s1 σr1,s2 … σr1,s5

σtot,r2 σr1,r2 σ2r2 σr2,s1 σr2,s2 … σr2,s5

σtot,s1 σr1,s1 σr2,s1 σ2s1 σs1,s2 … σs1,s5

σtot,s2 σr1,s2 σr2,s2 σs1,s2
. .
. ..

.

..

. ..
. ..

. ..
.

σ2s4 σs4,s5

σtot,s5 σr1,s5 σr2,s5 σs1,s5 … σs4,s5 σ2s5

2
666666666666664

3
777777777777775

: ð17Þ

Zhang10 found that using the full covariance structure, Σcross, for forecast reconciliation of wind power production on short horizons yielded

the best results. Additionally, Nystrup8 also argued for the superiority of using a more complex covariance structure in a temporal setting. There-

fore, we expect Σcross to yield the best results. For computational purposes, it might still be worthwhile to consider using some block structure,

especially if the reconciliation is done in multiple dimensions, such as in a spatio–temporal hierarchy.

3.2 | Estimating Σ

Before we can solve the regression problem given in Equation (10), we need to estimate the covariance of the coherency errors, Σ. In cases where

we have many variables and many data points per variable, it quickly becomes computationally expensive to compute. Let σ̂tij denote the esti-

mated covariance between elements i and j at time t. As given by Pitman,25 the covariance between any two elements in the cross-covariance

matrix can be computed using

covðεti ,εtj Þ¼ E½εti εtj ��E½εti �E½εtj �, ð18Þ

as

σ̂tij ¼
1
t

Xt
l¼1

elie
l
j�

1

t2
Xt
l¼1

eli

 ! Xt
l¼1

elj

 !
: ð19Þ

If we have the cross-covariance matrix at time t and wish to estimate it at tþk, the naive approach is simply to recompute it for every

observation:

σ̂tþk
ij ¼ 1

tþk

Xtþk

l¼1

elie
l
j�

1

ðtþkÞ2
Xtþk

l¼1

eli

 ! Xtþk

l¼1

elj

 !
: ð20Þ

3.2.1 | Recursive estimation

Recomputing the cross-covariance matrix each time we update the model is computationally expensive. Hence, we want to estimate it recursively.

By changing the index of the summation and rewriting, we get

σ̂tþk
ij ¼ 1

tþk

Xt
l¼1

elie
l
jþ

1
tþk

Xtþk

l¼tþ1

elie
l
j�

1

ðtþkÞ2
Xtþk

l¼1

eli

 ! Xtþk

l¼1

elj

 !
: ð21Þ

If we reorder the original expression a bit, we get

σ̂tijþ
1

t2
Xt
l¼1

eli

 ! Xt
l¼1

elj

 !
¼1

t

Xt
l¼1

elie
l
j ð22Þ
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t � σ̂tijþ
1

t2
Xt
l¼1

eli

 ! Xt
l¼1

elj

 ! !
¼
Xt
l¼1

elie
l
j: ð23Þ

By insertion, we get

σ̂tþk
ij ¼ t

tþk
� σ̂tijþ

1

t2
Xt
l¼1

eli

 ! Xt
l¼1

elj

 ! !
þ 1
tþk

Xtþk

l¼tþ1

elie
l
j�

1

ðtþkÞ2
Xtþk

l¼1

eli

 ! Xtþk

l¼1

elj

 !
: ð24Þ

Since we are dealing with forecast residuals, we assume that the true mean is zero, that is, that the forecasts are unbiased. Using this assump-

tion and thereby omitting the mean estimates from the expression, we get

σ̂tþk
ij ¼ t

tþk
� σ̂tijþ

1
tþk

Xtþk

l¼tþ1

elie
l
j: ð25Þ

This way of estimating the covariance prevents doing unnecessary work and keeps the computation time for updating the covariance

matrix low.

3.2.2 | Adaptive

In the recursive estimation, we choose the weight of the previous value to ensure that the weight given to each residual is equal. However, this

idea can easily be expanded such that the most recent values get the highest weight.

Nielsen26 proposed to use an adaptive variance estimate through exponential weighting

σ̂tþk
ij ¼ λσ̂tijþð1� λÞσ̂tþ1:tþk

ij , ð26Þ

where σ̂tþ1:tþk
ij is the covariance estimate for the period tþ1 to tþk and λ� ð0,1Þ. It is the weighted sum of the previous covariance with the

covariance of newly attained data. This is also under the assumption that the true mean of the residuals is zero. The effective number of observa-

tions, also referred to as the memory (length) is given by

1
1�λ

�k, ð27Þ

where k is block size, that is, the number of new observations in each update.

This way of adaptively estimating the covariance is computationally less expensive than the naive approach. Furthermore, it is a way of all-

owing the covariance structure to adapt over time following the data.

4 | RESULTS

In this section, we apply the method of forecast reconciliation outlined in Section 3 to a spatial hierarchy for wind power production in Western

Denmark. Specifically, we construct the hierarchy shown in Figure 1B, with 15 regions and 407 stations, such that n¼423 and m¼407. The

focus is offline forecasts for the day-ahead electricity market. Since our focus is an offline setup where the limiting factor is the accuracy of the

NWPs, the timestamps of the forecasts denote when the ECMWF computations were initialized. All timestamps that denote intervals are right

bounded, such that 01:00 means 00:00–01:00, and so forth. Hence, we want to predict 25–49 h into the future (from NWP initialization). This is

consistent with forecasts for the day-ahead market.

The forecasts for the hierarchy are reconciled by solving the optimization problem given in Equation (11) for each hour. The covariance esti-

mates are marginal estimates that are made for all time horizons (25–49 h) with equal weighting. Hence, we assume that the covariance structure

of the forecast residuals does not change with respect to the forecast horizon. As discussed by Møller27 and Nielsen,28 wind power forecasts are

decoupled from the observed values after approximately 12 h. Therefore, the covariance structure for horizons greater than 12 h will be assumed

stationary. Additionally, assuming a constant covariance structure allows us to utilize all data points for its estimation. This is expected to result in

a better estimate of the covariance structure in general.

HANSEN ET AL. 625

 10991824, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2819 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [23/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Due to computational constraints, the covariance matrix is only updated and inverted once every 30 days during the 2-year period 2019 and

2020. The delay in data of 10 days is respected, also with regards to the estimation of Σ. When estimating the covariance matrix, we use the first

6 months as a burn-in period. Since the total forecasts are available from mid-2018, this corresponds to using 2018 as training data. No data from

this period are included when evaluating the forecast accuracy across the hierarchy. Initial tests show that using a full cross-covariance matrix,

Σcross, yields the best results. Therefore, we do not consider any block structures of Σ.

Evaluation of model performance after reconciliation showed a small difference in accuracy between the three station-level models described

in Section 2. Therefore, we only consider the simplest model in the following, that is, the station model using NWPs of wind speed as the only

predictor. Results for the other models can be found in Appendix A. Generally, the results show that while there is a difference in accuracy for the

individual substations, as discussed in Section 2, there is little to no difference in the accuracy of the total forecasts after reconciliation.

As performance statistics, we consider root mean square error (RMSE), mean absolute error (MAE), bias, and symmetric mean absolute per-

centage error (SMAPE):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

jetj2
vuut , ð28Þ

MAE¼ 1
T

XT
t¼1

jetj, ð29Þ

BIAS¼ 1
T

XT
t¼1

et, ð30Þ

SMAPE¼ 1
T

XT
t¼1

jetj
ðytþ ~ytÞ=2

, ð31Þ

where T is the number of residuals, which is slightly less than 2 �365 �24¼17520 because of missing data points. Since the installed wind power

capacity changes significantly during the evaluation period, we normalize the performance statistics. We normalize with respect to the full capac-

ity in the individual steps; that is, the forecasts for each day are normalized with respect to the installed capacity for that given day, such that

NRMSEDK1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1jeDK1,t

CDK1,t
j2

q
, and so forth. This ensures that the accuracy of the model does not depend on the capacity of the system. When

comparing two models, we consider the relative forecast accuracy as advocated by Hyndman,29 for example, relative root mean square error

(RRMSE), given by

RRMSE¼100% �RMSErec�RMSEbase

RMSEbase
, ð32Þ

where RMSEbase and RMSErec are the RMSE of the base and reconciled forecasts, respectively.

4.1 | Accuracy of total forecast for DK1

Table 2 compares the accuracy of reconciled and aggregated forecasts for the highest level of the hierarchy, that is, the total forecast for DK1.

The covariance matrix is re-estimated once every 30 days; hence, the forgetting factor is per 30 days.

TABLE 2 Accuracy of the total DK1 forecast made using the different reconciliation methods and by aggregating the regional and station
forecasts, respectively. The station forecasts only use wind speed as predictor. More results can be found in Table A1.

Model NRMSE NMAE SMAPE RRMSE RMAE RSMAPE

Total (base) 0.0581 0.0400 0.2981 0% 0% 0%

Region (agg.) 0.0514 0.0356 0.2694 �11.5% �11.0% �9.63%

Station (agg.) 0.0528 0.0367 0.2808 �9.1% �8.3% �5.80%

Recursive (rec.) 0.0462 0.0333 0.2612 �20.5% �16.8% �12.38%

Adaptive (rec.)a 0.0462 0.0333 0.2611 �20.5% �16.8% �12.41%

aλ¼ 5
6 corresponding to an effective memory of 180 days, because the covariance matrix is estimated every 30 days.
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Aggregating either the regional base forecasts or the station base forecasts produces two alternatives for the total forecast. Both are more

accurate than the total base forecast. This is consistent with previous studies of bottom-up versus top-down methods. Aggregating the regional

base forecasts yields a more accurate forecast for DK1 than aggregation of the station base forecasts. This underlines that the regional base fore-

casts are state-of-the-art forecasts from a much more complex model fitted by a professional forecast provider.

The total forecasts for DK1 produced through forecast reconciliation using recursive and adaptive covariance estimation both outperform

the other forecasts quite substantially. Forecast reconciliation reduces the RMSE by 20.5% compared to the total base forecasts, which is 10%

points better than aggregating the regional state-of-the-art base forecast. For MAE and SMAPE, the reductions were 16.8% and 12.4%, respec-

tively. The accuracy improvement is stable with respect to the adaptivity of the covariance estimator. In other words, the accuracy is very similar

for recursive estimates, estimates with low memory, and estimates with high memory. The almost nonexisting difference in performance between

using adaptive and recursive estimates of the covariance matrix implies a time-stable covariance structure.

Figure 5A,B shows the RMSE and BIAS as a function of the forecast horizon across all levels of the hierarchy (possibly aggregated) and the

reconciled total. The reconciled forecast is obtained via recursive estimates of Σ in these figures; however, the equivalent figures using the adap-

tive estimates are extremely similar. From the figures, it is evident that the reconciled forecasts outperform all the individual forecasts in terms of

RMSE on all horizons. The bias of the reconciled total forecast is similar to that of the aggregated regional forecast.

RMSE increase with the forecast horizon. This largely comes down to errors in the weather predictions. The accuracy of the NWPs decreases

with forecast horizon, which in turn yields less accurate base forecasts. The effect of forecast reconciliation seems to be independent of the fore-

cast horizon as the distance between the lines in Figure 5A is more of less constant across horizons.

Figure 6 shows a boxplot of the residuals of the total base forecast and the reconciled total forecast using recursive estimation of the covari-

ance. It is evident that reconciliation significantly reduces the number of very large residuals, which suggests that the reductions in RMSE and

MAE come somewhat from fewer extreme errors. This implies that the reconciled total forecast is more robust forecast than the total base

forecast.

4.2 | Accuracy of regional forecasts

To better understand the increase in performance made by reconciling the forecasts, we will assess the change in performance at the regional

level. From Table 2, we can see that the regional forecast seems to produce the most accurate total forecast when aggregated. Hence, we will

compare the forecast at the regional level produced by the hierarchy with the original regional forecasts.

Figure 7 shows the change in performance on a regional level between the regional base forecast and the reconciled regional forecast. Notice

the average decrease in RMSE and MAE is 4.7% and 0.9%, respectively, which is substantially lower than the change seen at the highest level of

the hierarchy. The explanation for the discrepancy between the performance improvement on the regional and total levels lies in the residual cor-

relation between the regions.

Figure 8A shows the residual correlation between the regions for the original regional forecast. From this, it is obvious that there is a positive

correlation between most of the regions. In practice, this means that the variance of the forecast residuals for the “Total” model will be larger than

the sum of the variances of the forecast residuals for the regional forecasts. Additionally, we see some grouping structures, for example, regions

F IGURE 5 Performance statistics as a function of the forecast horizon for the total DK1 forecast using station model 1 at the lowest level of
the hierarchy. Notice “Region” and “Station” are both aggregated forecasts.
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f2,3g, f5,6g, and f10,11,12,13,14,15g. Comparing this with the regional map (Figure 1A) indicates that some of these groups could be based on

some geographical phenomena.

Figure 8B shows the change in residual correlation when reconciling. From this figure, it is clear that the residual correlation between the

regions is decreased (≈0:05 on average), which in turn results in better performance on the total aggregate.

4.3 | Performance of station forecasts

Table 3 shows that while forecast reconciliation may be effective at an aggregate or regional level, it does not appear to improve forecasts at the

level of individual stations. This could be due to the fact that the assumption that all residuals are Gaussian, which is made during reconciliation,

F IGURE 6 Boxplot of the residuals of the reconciled total forecast and the residuals of the base total forecast.

F IGURE 7 Change in RMSE and MAE between the regional base forecast and the reconciled regional forecast.
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may not hold true at the station level, particularly for smaller stations. Additionally, it can be seen that the mean of the performance metrics that

are normalized by capacity are particularly affected by this limitation. This is likely because the errors introduced by the hierarchical structure are

given more weight for stations with smaller capacities, and in some cases, this may result in, for example, negative reconciled forecasts.

It is important to note that while the reconciled forecasts for individual stations may not have improved, we saw substantial improvements

on the total and regional level, as demonstrated above. The fact that the station-level forecasts did not improve is unlikely to have a significant

impact on the overall accuracy of the hierarchy, given the relatively small contribution of individual stations to the total forecast. Therefore, while

the limitations of forecast reconciliation at the station level should not be overlooked, they do not negate the benefits of the approach for fore-

casting wind power production at higher levels of the hierarchy.

5 | DISCUSSION

We have seen that using spatial reconciliation for hierarchical forecast of wind power in DK1 produces improvements to the commercial fore-

casts. To maintain comparability, the same producer of NWPs (ECMWF) has been used for all the considered forecasts. The methods used by the

commercial forecast provider to generate base forecasts were largely the same as we used for producing base forecasts for the stations; see, for

example, Nielsen.22 Combined with the fact that the same weather provider has been used for all models, this ensures that any potential improve-

ments to performance are not a result of including additional information about the weather, but it is only a result of increased robustness via the

structural information, that is, the hierarchy.

In this paper, the focus was on how to improve forecasts of wind power production using information from different spatial levels. After the

spatial reconciliation of the forecasts, we saw that the performance of the total forecast was improved substantially. Further investigation showed

that these improvements were partly due to improvements to the regional forecasts but also due to decorrelation of the residuals of the regional

forecasts. After analysis of the individual stations, we did see that on average the individual station forecasts were getting worse after reconcilia-

tion. This is largely because of the assumption of normality in the base residuals does not hold and reconciliation might lead to nonsensible results

(e.g., negative station forecasts). If individual station forecasts are of importance, then one should consider additional constraints to the optimiza-

tion problem given in Equation (11) and apply, for example, non-negative reconciliation, as described by Wickramasuriya.30

The presented methods will lead to coherent forecasts across all spatial aggregation levels. The coherent forecasts imply that key network

operators, such as the TSO and DSO, have a better basis for taking coordinated actions, which is of increasing importance for the future low-

carbon power system. As discussed in Section 2, the improved accuracy of the regional forecasts are helpful in alleviating or preventing

F IGURE 8 Correlation between regional base forecast errors and the change in correlation after reconciliation.

TABLE 3 Performance of base and reconciled station forecasts.

Model RMSE MAE NRMSE NMAE SMAPE

Station 2459 897 0.128 0.082 0.701

Reconciled 3055 1308 0.333 0.127 0.892
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distributional challenges. As mentioned in the introduction, forecast accuracy has an impact on the price of electricity. It would be interesting to

investigate the effect the improved accuracy of the DK1 forecast would have on a trading strategy, particularly considering that much of the

improvement was seen on the largest forecast errors.

We found that using adaptive estimation of the covariance matrix produced very similar results to the nonadaptive. This suggests that the

covariance structure is somewhat stable over time and does not change greatly on a monthly basis. However, we cannot say anything about what

would happen if we were to estimate the covariance matrix much more frequently, for example, every day. We were simply not able to do so,

partly due to a relatively long delay in data availability, and partly due to computational limitations when back-testing.

For future studies, it might be interesting to test the effect of updating the covariance matrix more frequently. Especially regarding adaptive

estimation, since this relies on capturing local structural changes. Additionally, it would be interesting to investigate potential relations between

wind direction and covariance structure. It would also be interesting to expand the hierarchy and include a larger geographical area. Initially, it

could be expanded to include the entirety of Denmark. In an increasingly connected Europe, coherent and accurate forecasts are becoming

increasingly relevant everywhere.

It is important to note that the focus of the current study was on achieving improvements of existing forecasts with a low additional compu-

tational burden. There may be benefits to exploring improved station forecasts through the use of more detailed models that could include more

covariates; see, for example, Sørensen.14 Including additional covariates in the model may lead to more accurate forecasts, but it would come at

the cost of increased computational resources. It would be interesting to conduct further research to compare the performance of models that

include all relevant covariates with models that prioritize computational efficiency. Such research could help identify the trade-off between per-

formance and computational resources and guide future forecasting efforts.

6 | CONCLUSION

The goal of this paper was to implement a spatial hierarchy in the context of day-ahead forecasts of wind power production based on NWPs. Spe-

cifically, we wanted to investigate the possibility of getting meaningful improvements by utilizing localized substation data in a computationally

inexpensive and simple way that is easy to implement in an operational setting.

When modeling, we saw that correcting for both horizon and temperature yielded improvements for station models. However, when compar-

ing the reconciled forecast of the different stations model, the performance improvement was diminished. Implying that most of the benefits at

the total level can be achieved using a simple model at the station level. This alleviates some computational burden and demonstrates that a spa-

tial hierarchy can be an easy way of incorporating data from substations into an already existing setup.

We found that by reconciling the spatial hierarchy and comparing it with operationally used commercial state-of-the-art forecasts at the

highest level of the hierarchy, RMSE and MAE were reduced by 20.5% and 16.8%, respectively. Especially, the number and magnitude of the most

extreme residuals were reduced.

Using adaptive estimation of the covariance matrix produced results very similar to the nonadaptive covariance structure, implying a

very stable covariance structure for the wind power stations and their regions. Assessing the effect reconciliation has on the regional fore-

casts, it is evident that there are performance improvements in the individual regions. With that being said, the performance improvement

we saw for the total forecast is partly due to lower variance in the individual regions but also due to a quite significant decrease in inter-

regional residual correlation.

Hierarchical forecasting implies a transfer of information between aggregation levels, which typically leads to improved forecasts on the indi-

vidual levels. Furthermore, forecasting using spatial hierarchies will ensure an improved consistency between aggregated forecasts on different

aggregation levels, and the coherent forecasts will help facilitating a better coordination between various operators in the grids.
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APPENDIX A

TABLE A1 Accuracy of the total DK1 forecast made using the different reconciliation methods and by aggregating the regional and station
forecasts, respectively.

Model NRMSE NMAE SMAPE RRMSE RMAE RSMAPE

Total (base) 0.0581 0.0400 0.2981 0% 0% 0%

Regiona 0.0514 0.0356 0.2694 �11.53% �11.00% �9.63%

Station 1 (wind)a 0.0528 0.0367 0.2808 �9.12% �8.25% �5.80%

Station 2 (wind + horizon)a 0.0524 0.0366 0.2760 �9.81% �8.50% �7.41%

Station 3 (wind + horizon + temp)a 0.0522 0.0365 0.2760 �10.15% �8.75% �7.41%

Recursive 1 (wind)b 0.0462 0.0333 0.2612 �20.48% �16.75% �12.38%

Recursive 2 (wind + horizon)b 0.0461 0.0333 0.2598 �20.65% �16.75% �12.85%

Recursive 3 (wind + horizon + temp)b 0.0461 0.0333 0.2599 �20.65% �16.75% �12.81%

Adaptive λ¼ 11
12 (wind)b 0.0463 0.0333 0.2612 �20.31% �16.75% �12.38%

Adaptive λ¼ 5
6 (wind)b 0.0462 0.0333 0.2611 �20.48% �16.75% �12.41%

Adaptive λ¼ 1
2 (wind)b 0.0463 0.0332 0.2866 �20.31% -17.00% �3.86%

aAggregated forecast.
bReconciled forecast.

632 HANSEN ET AL.

 10991824, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2819 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [23/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Reconciliation of wind power forecasts in spatial hierarchies
	1  INTRODUCTION
	2  DATA AND BASE FORECASTS
	2.1  Total
	2.2  Regions
	2.3  Stations
	2.3.1  Station model


	3  FORECAST RECONCILIATION
	3.1  Structure of Sigma
	3.2  Estimating Sigma
	3.2.1  Recursive estimation
	3.2.2  Adaptive


	4  RESULTS
	4.1  Accuracy of total forecast for DK1
	4.2  Accuracy of regional forecasts
	4.3  Performance of station forecasts

	5  DISCUSSION
	6  CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	FINANCIAL DISCLOSURE
	DATA AVAILABILITY STATEMENT
	PEER REVIEW

	REFERENCES
	APPENDIX A


