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Abstract: Current literature and guidelines on sustainable design often debate on the advantages
of natural ventilation (NV) and mechanical ventilation (MV) on indoor environment and energy
consumption. The present systematic review explores the existing literature comparing NV and
MV on the indoor comfort and well-being points of view. The findings emphasize that thermo-
hygrometric comfort is the main driver of occupants’ ventilation behavior, while ventilation design is
mainly led by indoor air quality targets. Moreover, more recent papers (especially after COVID-19
outbreak) emphasize the necessity of a health-based approach, contrasting airborne pathogens
transmission. In this sense, MV is more frequently recommended in public spaces, while hybrid
ventilation (HV) is often suggested as a solution to both ensure proper indoor conditions and energy
savings. The concept of well-being is currently under-explored, as the present literature only refers to
comfort. The same happens with topics such as visual, acoustic, and multi-domain comfort, as well
as passive techniques such as night cooling, or analysis of specific environments such as healthcare
facilities. Current knowledge would benefit from an expansion of future research in these directions.
The choice of the best ventilation solution cannot ignore the context, type, and condition of energy
efficient buildings, in order to properly take into account occupants’ well-being.

Keywords: building ventilation; indoor comfort; well-being; energy saving; climate-responsive design

1. Introduction

It is well-recognized that the building sector has a key role in the framework of energy
savings, being responsible for 40% of energy consumption and 36% of emissions of green-
house gasses in the European Union [1]. For this reason, design concepts such as net-zero
energy buildings (nZEBs), net-positive energy buildings (nPEBs), and climate-responsive
architecture are fundamental to reduce the carbon footprint. In fact, in nZEBs the total
annual energy balance (produced minus consumed) is equal to zero [2,3], while in nPEBs
the balance is even positive [4,5]. On the other hand, climate-responsive design allows
the creation of a structure intrinsically connected with building location, using responsive
technologies to improve the performance of buildings [6–12]. Furthermore, indoor well-
being cannot be neglected in buildings’ design. The well-being concept is heterogeneous,
and efforts have been made to define it. Nevertheless, the two aspects of environmental
comfort and satisfaction, as well as cognitive performance, health, and productivity, emerge
in the building context [13]. Therefore, a good definition of well-being regards it as the
combination of feeling good and functioning well [14]. For these reasons, good indoor air
quality (IAQ), thermal, acoustic, and visual conditions, and their interaction (multi-domain
approach) as all part of the indoor environmental quality (IEQ), are fundamental not only
for health and comfort, but also for other aspects such as physiological and psychological
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ones (e.g., working performance) and, since occupants tend to take action to make them-
selves comfortable, energy consumption [15–22]. Occupants can suffer from illnesses and
complaints related with comfort, health, and safety in several indoor spaces [23]. Since
the World Health Organization (WHO) Sick Building Syndrome declaration in 1986, IAQ,
connected with health and comfort, has been strongly considered in indoor design [24,25].
In fact, several pollutants might be present in internal environments, with an adequate
air-supply rate necessary to ensure healthy conditions for occupants [26–28]. In this com-
plex framework, ventilation has a key and fundamental role, since it has high impact on
both buildings’ energy consumption and IEQ. Depending on the ventilation technique,
which can be used in combination with other passive solutions such as the use of thermal
inertia for night cooling and shadings to avoid solar heat peaks, the carbon footprint can be
consistently lowered [29–35]. Moreover, ventilation choice cannot overlook the well-being
of occupants, which needs to be the primary aim of indoor design [25,31].

Generally speaking, ventilation techniques can be divided into three main groups: nat-
ural ventilation (NV), mechanical ventilation (MV), and hybrid or mixed mode ventilation
(HV or MMV). Each of these categories have different implications on energy consumed and
comfort. NV, totally relying on natural forces (wind- or buoyancy-driven), can consistently
lower buildings’ carbon footprint [36–40]. Moreover, the acceptable range of thermal com-
fort was noticed to be enlarged when NV is present, with higher acceptance of high indoor
temperatures when outdoor temperatures are high too [41,42]. This led to the introduction
of the adaptive model for naturally ventilated buildings on ASHRAE Standard 55, which
is now used together with Fanger’s model in naturally ventilated buildings [41,43–45]. In
addition to that, NV might be associated with benefits related with environmental and
work satisfaction, productivity, and Sick Building Syndrome, as well as improved feeling of
control for occupants and access to the outside environment [30,36,46–55]. The use of NV is
suggested by Leadership in Energy and Environmental Design (LEED), in order to decrease
both the carbon footprint and heating, ventilation, and air conditioning (HVAC) expenses.
In this sense, positive correlations between fulfilled LEED rating and satisfaction perceived
was demonstrated [56]. Conversely, the possibility to fully regulate temperature, airflow,
and air velocity is a clear advantage of MV, of which performance is perfectly predictable
and controllable if compared with NV, with positive implications on the IAQ [25,47,57–59].
The use of heat recovery units can partially overcome the drawback of the larger amount of
energy with respect to NV [60–63]. Finally, HV can be a good compromise between the two
techniques, guaranteeing energy savings, but exploiting MV when proper IEQ conditions
cannot be met with NV only [29,30,55,64–69]. Current literature and standards argue on
which of the two techniques should be preferred. Controversial opinions about this topic
were also highlighted by the COVID-19 pandemic [70]. In fact, the risk of infection is
strongly dependent on relative humidity (RH), temperature (T), and ventilation [71]. In this
framework, ASHRAE recommended to use NV only in homes where MV or air-purifiers
were not installed, in order to avoid thermal discomfort [72–74]. On the other hand, NV
was also associated with the buildings’ infection management [75,76]. In fact, CIBSE and
REHVA recommended massive use of window openings, even in mechanically ventilated
buildings and in winter [77,78]. Moreover, during London’s lockdown, windows were
noticed to be associated with positive cross influences of indoor mental well-being due to
positive perceived soundscapes, vegetation view, and natural sounds [48,49]. In a global
warming condition, the adaptive comfort model might cease to be fulfilled in plenty of
indoor spaces in the next ten years [79], but a higher use of NV in colder climates might be
induced by the shifting of climate conditions [30].

In this framework, it is clear that when dealing with concepts such as nZEBs, nPEBs,
and climate-responsive architecture, the choice of ventilation technique is of paramount
importance. Moreover, comfort and well-being should be among the main drivers in
buildings’ design, and therefore a strong literature background on how each type of
ventilation influences comfort at different climates and seasonal conditions constitutes an
important basis for proper design choices.
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The aim of the present review to provide a framework on scientific evidence of papers
comparing NV and MV in terms of comfort and well-being, in the perspective of performant
and sustainable buildings’ design (e.g., nZEBs, nPEBs, and climate-responsive buildings).
The main hypothesis is that ventilation is firstly aimed to provide IEQ, with energy savings
as a very important additional aim. For this reason, the following research questions
were explored:

1. Which differences are present between IEQ conditions guaranteed by NV and MV?
2. Which ventilation techniques are more suitable at different climatic, seasonal, and

outdoor pollution conditions according to both IEQ and energy perspectives?
3. Which ventilation techniques are more suitable with different building types and uses?
4. Which are the research gaps in terms of effects of NV and MV on the IEQ, depending

on the type of building, the ventilation technique and the comfort domain considered?

If integrated with other studies, the articles here summarized can be exploited by
policymakers in order to further expand and update ventilation standards and guidelines
taking into account both energy consumption and indoor well-being. The development
of such guidelines is fundamental for engineers, architects, and planners in order to help
them in conscious and contemplated choices during the design process.

2. Methodology
2.1. Research Methodology

A systematic review [80] was performed using AND/OR Boolean operators [13] in
a search on the Web of Science [81] database. The search was aimed at identifying all the
studies regarding an NV-MV comparison in terms of comfort and well-being. Figure 1
reports the detailed search string used. The PRISMA flow diagram was used in the
systematic review process [82].

Figure 1. Boolean search string used for the first papers’ search query. Keywords on the same column
were linked with the “OR” operator, while black lines represent the “AND” operator.

2.2. Inclusion Criteria and Screening Process

All types of articles (journal papers, reviews, and conference proceedings) were in-
cluded. In order to refine the research, considering only the relevant works, the following
inclusion–exclusion process was applied:

1. Limiting of the research to English-written studies within the following research areas:
(a) construction building technology; (b) engineering civil; (c) engineering environ-
mental; (d) green sustainable science technology; (e) environmental sciences; (f) public
environmental occupational health; (g) environmental studies; (h) architecture;
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(i) thermodynamics; (j) engineering mechanical; (k) infectious diseases; (l) regional
urban planning; (m) urban studies;

2. Titles and abstracts screening, rejecting all the papers not in compliance with the
research questions, thus not comparing NV and MV on a comfort and/or well-being
point of view;

3. Rejection of the studies which full text was not available;
4. Full papers’ reading.

2.3. Categorization and Data Analysis

Based on the aim of the present research, selected studies were categorized according
to different criteria:

1. Type of environment considered (residential, educational, working, healthcare, etc.);
2. Type of paper (journal paper, journal review, and conference proceedings);
3. Comfort domain analyzed by the paper (thermo-hygrometric, visual, IAQ, acoustic,

or multi-domain);
4. Type of ventilation recommended, between “NV only”, “MV only”, “HV (or both HV

and NV)”, “no clear preference stated”.

The geographical area and/or climate the studies were related to were also highlighted
when applicable and specified. In the framework of sustainable design such as nZEB, nPEB,
and climate-responsive architecture, outcomes in terms of energy consumption and savings
were also highlighted. Moreover, when related with NV and when specified, the ventilation
aim was also considered, dividing between air change, thermal regulation, and night
cooling (as a more specific type of thermal regulation with remarkable passive design
applications) [32,33,41,75,83–86]. Keyword co-occurrence analyses were performed by
means of the software VOSviewer 1.6.18. Further statistics based on the publication year
and publication geographic area were also considered.

3. Results
3.1. General Data and Statistics

Details about the number of papers found after each screening phase are reported
in Figure 2. A total number of 94 papers was firstly found, with 68 eligible for full paper
reading. After this last process, six more papers were rejected, with a final number of
62 papers considered and analyzed in this essay. Further details on the selection process
are available in a PRISMA flow diagram in Figure A1 in Appendix A. Most of the included
articles (71.0%) are journal papers, followed by reviews (19.4%), and conference papers
(9.7%) (Figure 3).

Figure 2. Papers found after each phase of the screening process.
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Figure 3. Percentage of papers per type.

Figure A2 shows the number of papers per publication year. It is clear that, starting
from 1994, the topic gained a growing interest, with the number of published papers rising
year by year (i.e., one in 1994, five in 2021). It is also interesting to notice that year 2020,
during the COVID-19 pandemic, showed a peak in the number of papers (9), due to the
obvious necessity to deepen the knowledge into ventilation related with infection airborne
transmittance. Figure A3 depicts how the majority of the included articles were European
(47.0%) and Asian (31.3%). On the other hand, only 4.8% of the papers were African, and
none were South American. Details in Figure A4 show that England is the major publisher
of included papers (11), followed by China (10), and USA (6).

Eventually, Figure 4 shows the co-occurrence keywords analysis (minimum occurrence
number set equal to five for the representation) of the articles included in the present review.
With 28 and 27 occurrences respectively, “natural ventilation” and “thermal comfort” were
the most frequent keywords. “Indoor air quality” (in the three forms of “Indoor air quality”,
“Indoor air-quality” and “IAQ”) was found 26 times in total. On the other hand, visual and
acoustic comfort domains were not frequently explored (“acoustic” and “noise” appeared
respectively one and two times, while “daylighting” appeared only once). Furthermore,
it is important to highlight that neither the “well-being” nor the “wellbeing” keywords
appeared in the articles included.

Figure 4. Co-occurrence keywords analysis of the articles included performed with VOSviewer 1.6.18,
considering the keywords with a minimum number of occurrence equal to 5.
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3.2. Papers Related with Residential Environments

In this subsection, results related with papers discussing NV and MV comfort com-
parison in residential environments are reported. A total number of eighteen articles were
found, mainly journal papers (13) and conference papers (4), with only one literature
review (1). The highest number of these research (9) were related to case studies located in
Europe, followed by Asia (6), Oceania (2), and Africa (1). Ventilation for thermal regulation
and ventilation for air change were analyzed, generally with a direct correspondence with
thermo-hygrometric comfort and IAQ respectively. Night cooling was also considered
in some cases, even though it was mainly listed as a way to better exploit NV. Thermo-
hygrometric was the comfort domain most frequently considered by the papers here
analyzed (15 articles out of 18), followed by IAQ (10 articles) and acoustics (6 papers). One
paper considering visual and multi-domain comfort was found. Contrasting conclusions
on which ventilation type is preferrable on the comfort point of view were found, as well as
regarding the system providing higher energy savings. Brief summaries of the main find-
ings are reported in this Subsection, in Table 1. The details concerning each paper, key data
(type of paper, climate, and ventilation considered and suggested), comfort domains treated
and main conclusions are present in Table S1 (available as Supplementary Materials).

Table 1. Key findings related with residential environments.

Thermo-Hygrometric Comfort

Main findings References

Improvement of thermal comfort or temperature control conditions when using MV or HV, especially
when hotter or colder outdoor conditions are present [87–93]

Good or better performance of NV in terms of thermal comfort [94,95]

Thermal comfort is one of the main drivers of occupants’ behavior associated with NV, with the air
change rate and windows opening being dependent on outdoor temperature [88,96,97]

Necessity of proper design of buildings where NV is planned to be exploited for thermal comfort
(architectural elements, windows, openings, orientation, control, etc.) [98–101]

In a Chinese students’ dormitory during winter, temperature and humidity decreased to values
under 20 ◦C and 30% after 4 h of night ventilation with ventilation rates of 0.050 m3/s and

0.036 m3/s, respectively
[100]

Too low or too high building tightness is associated with condensation risks [96]

Too low or too high building tightness is associated with draughts or fluctuating temperature [101]

In a temperate continental city of China, humidification was seen as an issue with both NV and MV,
and occupants perceived drier conditions with MV [95]

In developing countries, comfort range with NV might be larger (14.6–26.3 ◦C of comfort range
found in an Ethiopian case study), allowing to satisfactorily exploit this ventilation technique [94]

Thermal comfort, health, and energy savings are the three drivers of ventilation behavior [97]

Visual comfort

Main findings References

A higher probability of windows opening was observed in Italy during 2020 winter lockdown, where
a vegetation view was present [102]

IAQ

Main findings References

Even though their priority is thermal comfort, occupants seem to be more inclined to spend more on
energy if healthier environments can be provided [97]

The use of MV is associated with better air quality or sweeping effect [87,88,101,103]

MV can mitigate air-tightness issues (lowering the radon concentration from 412 Bq/m3 to 70 Bq/m3,
and the CO2 concentration to an average around 760 ppm in a Romanian case study)

[87]
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Table 1. Cont.

Thermo-Hygrometric Comfort

Direct link between air change rate (and ventilation behavior) and IAQ conditions [96,100]

IAQ conditions are strongly dependent on outdoor conditions or air tightness of buildings [92,95,103]

HV can be a solution when proper IAQ conditions cannot be met with NV alone [100,104]

Acoustic comfort

Main findings References

Noise from both outdoors (NV) and systems (MV) can be a discomfort source [91,92,97,101]

Together with thermal discomfort and stuffy air, noise can be one of the factors reducing the quality
of sleep [88]

During 2020 winter lockdown in Italy and UK, tendency by occupants to keep windows open, at
least sometimes, even in urban areas. Necessity to include the concept of pleasant acoustic contexts in

standards. Proposal of introduction of an “adaptive acoustic comfort” concept
[102]

Multi-domain

Main findings References

Study and application of multi-domain concept would be fundamental for the definition of acoustic
criteria in naturally ventilated buildings [102]

Energy consumption and other issues

Main findings References

MV can allow for reduction in consumption, due to less windows openings [96]

MV can allow for reduction in consumption, due to the use of heat recovery (86% reduction found
with respect to NV) [87]

NV allows for less demand of energy [91,93,95]

NV can be exploited with not extreme temperatures or not too high outdoor PM2.5 concentration [95]

Increase in energy consumption up to 20% found with MV in simulative study performed in
Mediterranean climate: NV with night cooling suggested for smaller residential buildings, and MV

or HV for larger residential or commercial ones
[91]

NV can allow for large energy savings in developing countries (wide comfort range in a field study in
Ethiopia). Further research suggested to confirm this conclusion [94]

Thermal comfort, health, and energy savings are the three drivers of ventilation behavior [97]

Feasibility, safety, and life cycle costs need to be preliminary analyzed in the design process [91]

Computational Fluid Dynamics (CFDs) simulations used or encouraged by a significant amount of
studies, in order to study air movement and comfort induced by NV or HV [89,90,98,99]

3.3. Papers Related with Non-Residential Environments

Works related with non-residential environments are here reported. Thirty-one papers
were categorized within this group: twenty-five journal papers, two conference papers,
and four reviews. Moreover, in this case, most articles were related to case studies located
in Europe (12). Five case studies were in Asia and five in North America, while only one
case study was in South America, one in Oceania, and one in Africa. One simulative study
considered three climate areas, two in Europe and one in Asia. The articles here grouped
mainly regard educational (12) and working environments (14). Articles regarding other
facilities, such as industrial or healthcare, are also present. Moreover, in the case of non-
residential buildings, thermo-hygrometric was the most explored domain (29 papers out of
31), followed by IAQ (21 papers), acoustic (10), and visual (6). Only three articles linkable
with the multi-domain concept were found. Present literature is debating whether MV or
NV provide better thermo-hygrometric comfort conditions in non-residential buildings.
Moreover, similarly to what concerned residential buildings, while papers related with
thermo-hygrometric comfort were mainly considering ventilation for thermal regulation,
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air change was the main focus of studies dealing with IAQ. Visual, acoustic, and multi-
domain comfort were only marginally treated. It is finally fundamental to highlight how,
after the pandemic, the main focus of the design seems to have changed to the control of
pathogens transmission. Key findings are summarized in Table 2, while specific details
about each article are reported in Table S2 (Supplementary Materials).

Table 2. Key findings related with non-residential environments.

Thermo-Hygrometric Comfort

Main findings References

In monitored classrooms in Beijing, both systems provided a too low temperature (below 18 ◦C) close
to the beginning and the end of running heating period [105]

1.5 ach−1 MV suggested in nucleus-type hospitals, in order to provide comfort conditions [106]

Personalized ventilation suggested in order to have thermal benefits for occupants [107]

NV alone is not sufficient to ensure thermal comfort in a large semi-transparent ceiling ocean park
case study [108]

NV or HV can be adequate to provide thermal comfort [30,55,64,67,109–115]

During summer in Dubai, when NV is not sufficient, despite the too high outdoor temperature and
too low wind, a reduction of 2–6 ◦C is possible in office buildings by NV [109]

Definition of 7 ◦C outdoor temperature as lower boundary for NV to be ineffective [115]

Definition of the range of applicability of NV between 10 ◦C and 25 ◦C of outdoor temperature [30]

Preference for NV is often related with the higher degree of control of occupants [25,30,55,111,116]

The negative effects of NV on productivity are under debate [111]

A higher productivity by men workers when HV was used instead of MV was found in an office of
Tokyo (Japan) [114]

Dependence of thermo-hygrometric comfort on outdoor temperature and users’ behavior [29,60,67]

Due to global warming, NV use will decrease at warmer climates, simultaneously increasing in
colder and mild areas [30]

HV can be used when non-optimal conditions are achievable with NV only [67,109,117,118]

Nighttime ventilation and night cooling can be exploited to enhance daily thermal comfort conditions [30,67]

Specific discomfort conditions (draught, too low temperatures) found with colder outdoor conditions [117,119,120]

The too low temperatures (around 18 ◦C) measured in Spanish schools during winter 2021 are
admissible only during an emergency situation such as the pandemic [119]

Importance of particular solutions such as temperature monitoring in schools, local discomfort
avoidance (by means of humidifiers, electric heaters of exhaust heat recoveries), building orientation,

proper design of the exhaust velocity
[66,112,119,120]

Importance of exhaust velocity optimization (e.g., depending on internal source of heat) in order to
maximize thermal comfort and energy efficiency and minimize the short-circuiting risk [66]

Visual comfort

Main finding References

Together with IAQ and acoustic, lighting is one of the IEQ aspects which needs deeper studies
connected with NV [111]

Daylight benefits of similar constructive techniques used for NV exploitation, such as operable
skylights or high windows. Direct sunlight and large glazed façades can lead to drawbacks on both

sides (i.e., overheating and glare)
[30]

Double-skin façades studied for NV have also the capability to provide natural light [112]

Aspect considered in the study, without direct findings related with NV and MV [55,106,117]
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Table 2. Cont.

Thermo-Hygrometric Comfort

IAQ

Main findings References

MV can help in providing optimal IAQ [25,60,107,120–124]

Higher IAQ satisfaction in NV buildings [113]

Small or no difference in the perception with the two modes [125]

Difference in the indoor environmental conditions perceived and actually present indoor [117]

The presence of operable windows can provide a feeling of fresh air perception [55]

Use of HV recommended, exploiting MV when not sufficient IAQ can be maintained with NV (e.g.,
too polluted outdoor conditions) [67,117,118]

NV might not be sufficient in air-tight buildings [120]

NV will benefit from low polluting mobility solutions such ass electric vehicles [30]

Most standards focus on perceived IAQ and CO2 concentration or energy consumption, but several
comfort, performance, and health issues are often reported in buildings: necessity to move from a

comfort-based to a health-based design. In this sense, benefits can be obtained by the use of
personalized ventilation

[107]

Poorly designed or operated ventilation can lead to poor IAQ, which can cause virus airborne
transmission due to dry conditions in winter: necessity the adoption of health-based ventilation

design
[25]

CO2 concentration reduction (1000 ppm, with a 1400 ppm decrease) in Spanish schools during the
pandemic, due to the most frequent airing [119]

Importance of having long and frequent airing periods with NV [67,118,121,126]

Suggestion of automated windows and/or CO2 and pollutants monitoring devices [117–119,122]

Acoustic comfort

Main findings References

Loud noise reported as one factor preventing the use of MV in Spanish schools [119]

Importance of noise evaluation when designing the ventilation solution [67,105,118]

Evaluation of noise with measurements or surveys in studies related with NV and MV [55,117,122,123]

In university classrooms, the intermittent noise of intermittent windows was better tolerated than the
continuous one of MV [117]

Benefits from less noisy mobility will be provided to NV [30]

Acoustics related with NV will need further studies in the future [111]

Multi-domain

Main findings References

IAQ has the potential to influence the other comfort domains (e.g., higher noise with higher IAQ due
to higher machines regimes, sunlight causing surfaces’ emissions of pollutants). These aspects should

be evaluated and studied altogether to assure comfort and health of occupants
[107]

Importance of deepening the studies of all the comfort aspects which are related to NV [111]

Direct association of noise level and IAQ with MV [123]

Energy consumption and other issues

Main findings References

NV or HV allow to save energy [29,30,67,105,110,111,114,
117–119,125,126]

Energy savings of ranging from 3.1 to 85% (coupling it with PV- system) reported with the use of NV
or HV [114]
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Table 2. Cont.

Thermo-Hygrometric Comfort

Not using adaptive model encouraging NV in green certification systems, might obstruct designers’
and occupants’ change in decision [111]

NV is widely used in schools of developing countries, in order to save energy [127]

If properly designed and with the use of proper techniques (energy storage or heat recovery),
reduction in energy consumption can be achieved with MV [121,124]

Automatic windows coupled with heat recovery counter-flow system through outside wall slots can
reduce the energy consumed in classrooms [122]

Careful design of ventilation (architecture, presence of heat recovery, technological solutions such as
occupancy sensors, temperature or CO2 monitoring, night cooling coupled with massive elements)

encouraged in order to reduce the carbon footprint

[29,66,67,106,109,118–
120,123,124,126,127].

The use of local climate conditions instead of international standards, with a consequent expansion of
upper and lower comfort limits, can lead to higher energy savings [110]

3.4. Papers Not Linked to a Specific Environment Type (Various, Unspecified, . . . )

This subsection comprises the articles which do not refer to a specific type of environ-
ment. This is due to two main reasons: 1. articles (mainly reviews) referred to all the types of
environments in general; 2. studies referred to general mock-ups or models. Consequently,
seven papers among the ones in this subsection are literature reviews, constituting the
majority of all the reviews considered in the present work. The rest of the articles here ex-
plored are journal papers (6). No conference papers are present in this subsection. Similarly,
several studies (7) were not linkable to a specific continent, country, or climate. Among the
others, four studies were related with Asia, one with Europe, and one was referred to tropi-
cal climate in general. Twelve articles out of thirteen considered the thermo-hygrometric
domain. The domain was again followed by IAQ (9), acoustic and visual (5 each), and
multi-domain (2). Moreover, also in this case, the thermo-hygrometric domain was mostly
linked with ventilation for thermal regulation and IAQ was mostly linked with air change.
Similarly to residential and non-residential sections, night cooling, when considered, was
mainly named or implied (e.g., as ventilation performed at night). Brief summaries of the
main results are reported in Table 3, while Table S3 (Supplementary Materials) contains
further and specific details about the articles considered in this subsection.

Table 3. Key findings related with various or unspecified environments.

Thermo-Hygrometric Comfort

Main Findings References

NV can sometimes be inapplicable due to extreme conditions (temperature or running air) [128]

In hot and humid climates (such as Malaysian) MV can be advantageous on the thermal comfort
point of view [129]

Well-designed NV is often adequate to maintain acceptable indoor thermo-hygrometric conditions [130–134]

Wider ranges of thermal comfort are present in hot, humid climates, than what is generally indicated
in international standard [131]

Cooling from MV should be used only when adequate thermal comfort conditions cannot be
guaranteed [65]

Ventilation energy can be reduced only if comfort of occupants can be guaranteed [31]

Importance of well-designed ventilation to guarantee occupants’ comfort [130,135]

Numerical models can be useful for control strategies [133]

Visual comfort
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Table 3. Cont.

Thermo-Hygrometric Comfort

Main findings References

Similar constructive techniques such as atriums, double skin façades, and apertures can be exploited
for both NV and daylight [31,132]

Used together with the other comfort domains to categorize the studies considered in the review [136]

IAQ

Main findings References

Even though NV is the cheapest and most often used environmental disinfection method against
airborne transmittable diseases, proper disinfection is provided by MV [128]

Higher morbidity cases (13–38% increase) and mortality (28% increase) related with NV adoption in
residential buildings of Singapore; adoption of technologies such as MV and filtration from current
NV in schools would diminish the number of asthma cases; mortality would also be decreased by the

use of filtration in workplaces

[137]

Importance of taking into account occupants’ behavior and pollutions’ sources in ventilation design [31,130,138]

Acoustic comfort

Main findings References

Noise is one of the parameters affecting occupants’ behavior. Atriums and double-skin façades can
be used to exploit NV, while protecting from noise [31]

Importance of considering outdoor noise when designing ventilation [130,133]

Used for categorization or marginally considered [136,138]

Multi-domain

Main findings References

Elements such as daylight availability (heat-load related), thermal mass, and night ventilation
(cooling load related) are essential for thermal comfort [138]

Thermal perception is also influenced by healthy IAQ [131]

Energy consumption and other issues

Main findings References

Energy savings are associated with passive cooling and NV [65,128,130,132]

Necessity of coupling ventilation techniques with other passive strategies, with the aim of decreasing
the carbon footprint of buildings [131]

Climatic design for passive cooling, use of orientation and materials (e.g., for night cooling) and
proper MV operations are fundamental for ventilation design [130]

Necessity of studies on vernacular apertures and elements, as well as louvered windows to exploit
night cooling, in order to maximize NV efficiency in tropical climate [132]

Importance of more studies in the field of balconies’ design, as well as post-occupancy evaluations,
for NV optimization [136]

Remarkable energy savings can be obtained by means of HV: more studies on smart window based
HV should be made [31]

Ventilation of unoccupied or low-occupied spaces leads to a significant amount of wasted energy [31]

A combination of mechanical and passive cooling and different control strategies can lead to a
reduction of more than the 60% of the system size and associated energy used [65]

Use of models and simulations applied and encouraged in design and evaluation [129,130,133,134]

3.5. Final Statistics

Table 4, on the left, reports the number of papers suggesting specific ventilation types.
Nineteen papers do not express a clear suggestion between MV, NV, and HV. Among
the rest of the papers, a relative similar share suggest NV (13) and MV (9), while most
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studies (21) recommend the use of HV in order to guarantee energy savings with backup
mechanical systems when IEQ conditions cannot be maintained by passive techniques
only. It is fundamental to stress that papers recommending HV normally suggest it when
satisfactory indoor conditions cannot be reached with NV alone. For this reason, it was
decided to group together papers recommending HV and both HV and NV, as “HV (and
NV)”. In the same table, on the right, the number of papers treating each comfort domain
is reported. As previously implied, thermo-hygrometric is the mostly explored domain
(56 papers), followed by IAQ (40), acoustic (21), and visual (12). Only six papers consider
or name the importance of a multi-domain approach.

Table 4. Number of studies suggesting each ventilation type and number of studies treating each
comfort domain. NV: natural ventilation; MV: mechanical ventilation; HV: hybrid ventilation; NP:
no preference. T.H.: thermo-hygrometric; Vis.: =visual; IAQ: indoor air quality; Ac.: acoustic;
M.Do.: multi-domain.

Ventilation Type Suggested Comfort Domain Treated

NV MV HV
(and NV) NP T.H. Vis. IAQ Ac. M.Do.

N. of papers 13 9 21 19 56 12 40 21 6

Figure 5 allows to explore the association between the publication year and the type
of ventilation recommended. It is interesting to notice how the share of papers recom-
mending NV or HV (and NV) seem to slightly increase in time, probably in relation with
energy efficiency issues. This trend seems to interrupt in 2021, most likely due to the
pandemic, causing more research to suggest the use of MV for health reasons and contrast
of virus transmission.

Figure 5. Association between ventilation type suggested and publication year. Numbers indicate
the number of papers recommending each ventilation type. NV: natural ventilation; MV: mechanical
ventilation; HV: hybrid ventilation; NP: no preference.

Similarly, Figure 6 shows association of comfort domain treated and year of publication.
The share of domains considered does not seem to be correlated with the publication year.
Nevertheless, as previous subparagraphs underline, visual and acoustic domain are mainly
treated marginally, especially in older publications. New publications, instead, more often
link these two domains with the multi-domain approach, which is actually more frequent in
recent years. Nevertheless, the approach is mainly suggested without performing complete
studies about it.
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Figure 6. Association between comfort domain treated and publication year. Numbers indicate the
number of papers considering each comfort domain.

The number of papers for each building category is reported in Table 5. Eighteen
papers refer to residential environments. On the other hand, thirteen studies are not
linked with any specific environment (e.g., laboratory studies) or are referred to various
types of buildings (typically reviews). The majority of papers (31) regard non-residential
environments. The highest share of these refer to educational (schools or universities)
facilities (12) or working (office) facilities (14). The rest regard industrial (1), amusement (1)
or non-residential buildings in general (2). Only one paper related with healthcare facilities
was found. The details about the type of ventilation recommended depending on the
building type are reported in Figure 7. It is clear that the share of articles suggesting MV or
HV is higher in non-residential buildings.

Figure 7. Type of ventilation suggested depending on building type. Numbers indicate the number
of papers recommending each ventilation type. NV: natural ventilation; MV: mechanical ventilation;
HV: hybrid ventilation; NP: no preference.
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Table 5. Number of studies per building type. Res.: residential; Non-res.: non-residential; Var.:
Various/Inapplicable; Edu.: educational; Hea.: healthcare; Wor.: working; Ind.: industrial; Amu.:
amusement; Gen.: non-residential in general.

Res.
Non-Res.

Var.
TOT Edu. Hea. Wor. Ind. Amu. Gen.

N. of papers 18 31 12 1 14 1 1 2 13

4. Discussions

The present literature review focuses on the comparison of IEQ conditions provided
by natural ventilation (NV) and mechanical ventilation (MV), with the aim of collecting
and offering a framework of scientific evidence to be exploited for sustainable design
(e.g., nZEB, nPEB, and climate-responsive architecture). For this reason, the comparison
of energy consumption by the two ventilation types was also highlighted, when present
in the literature analyzed. When present in the analyzed articles, benefits of HV were
also stressed.

The study permitted to highlight the following main considerations:

1. The articles comparing NV and MV in terms of indoor comfort and well-being found
in literature are not very numerous. Moreover, even though current research is moving
to the concept of well-being, this aspect is not explored in the studies included in
the present review, as related keywords never appear in the articles analyzed. Most
of the papers found regard non-residential facilities, in particular educational and
working environments, underlining the key role of ventilation for obtaining healthy
and comfortable conditions in highly occupied premises. Surprisingly, only one
paper related to healthcare facilities was found. Several papers highlighting the
performance of either MV or NV in healthcare facilities are present in the literature,
but the comparison between comfort and well-being provided by NV and MV in this
type of building is mainly under-explored. This is probably due to the specific field the
present review is related with: studies about ventilation in hospitals that mainly deal
with sanitation reasons; therefore, the comparison between the ventilation techniques
mainly regards that topic instead of indoor comfort. The association between the
number of studies and the publication year has been growing in time, with a sudden
increase during 2020, due to the COVID-19 pandemic. The highest amount of papers
was related to case studies located in Europe and Asia, highlighting a need for more
research in other areas of the world. Most papers explored thermo-hygrometric and
IAQ domains. When present, other domains were mainly considered only marginally,
for instance stating that a relation between them and ventilation (e.g., noise) is present,
and that further research in the field is necessary. During the most recent years, some
articles highlighting the importance of multi-domain research appeared. Nevertheless,
the topic has not been deeply explored yet.

2. Thermal comfort was the most frequently explored domain in all the types of envi-
ronments. In all cases, contrasting conclusions on whether MV or NV is preferrable
were drawn. Confirming what previously found in the literature, the main advan-
tage of MV was recognized to be the ability to precisely set the indoor conditions.
Nevertheless, this is not frequently perceived by occupants, who often prefer NV
due to a higher degree of control over the environment they occupy and a major air
movement, underlining the influence of the sensation of accessing to the outside. In
this sense, the thermal environment was observed to be the main driver of occupants’
NV behavior, with outdoor temperature (due to climate or season) being the main
parameter affecting windows opening. Moreover, a shift in the usage of NV might be
observed due to climate change, with the hours of windows opening potentially de-
creasing at warmer climates, but increasing at mild or colder ones. Furthermore, some
articles highlight the presence of wider comfort ranges in warmer and/or developing
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countries. This is probably due to reasons dealing with adaptation. The necessity of
proper ventilation design to ensure the right indoor thermo-hygrometric conditions
without creating local discomfort (such as draught) was stressed by several papers. In
this sense, a more local focus, instead of the reference to international standards and
the integration of other passive or active technologies such as night cooling or heat
recovery, was promoted. No remarkable differences in findings were found among
the different environment types.

3. After thermo-hygrometric, IAQ was the second most explored domain by the pa-
pers considered. Especially in residential environments, air tightness of refurbished
buildings was seen as an issue for IAQ conditions and proper ventilation design. Par-
ticularly in non-residential buildings, MV was often associated with better air quality
and less CO2 and particles concentration. Type of ventilation must be carefully chosen
depending on several conditions comprising outdoor pollution. In non-residential
facilities in particular, a sudden change in perspective was observed after 2020, with
a more health-driven vision of ventilation, strongly focused on the stop of airborne
transmission of pathogens.

4. Visual and acoustic comfort were mainly explored marginally, as well as multi-domain
approach. For instance, some recent works named visual and acoustic domains
highlighting that their connection with ventilation, thermo-hygrometric, and IAQ
conditions are important for future research, with a multi-domain point of view. Some
papers highlighted how daylight and NV often benefit of the same constructive and
architectural characteristics, such as high windows or operable skylights. Acoustic
comfort was often explored in terms of noise, seen as an issue for the application
of NV (when noise from the outside is present) or MV (poorly designed plants).
Nevertheless, the effect of outside pleasant sounds or the so called “adaptive acoustic
comfort” needs to be further studied and explored.

5. A high number of papers highlighted how energy consumption is the main disadvan-
tage in the use of MV. On the other hand, NV might be too dependent on occupants’
behavior and might lead to a loss of energy at colder or warmer conditions. Most
papers, especially when dealing with extreme climates or larger and commercial build-
ings, proposed HV as a solution. This technique allows to lower the carbon footprint
of buildings, while ensuring sufficient air change when proper indoor conditions
cannot be met with passive solutions. The higher share of papers suggesting MV or
HV in non-residential buildings is due to the fact that these facilities are constituted
by environments which are normally studied for a higher number of occupants (i.e.,
schools, offices). For this reason, automated or semi-automated systems seem to be
more adequate to guarantee the right amount of fresh air in these facilities. In order
to improve the ventilation efficiency and the energy savings, the use of advanced
technologies (e.g., heat recovery or energy storage) and proper and careful ventilation
design were often promoted. For instance, focus should be placed on the optimal
velocity of the exhaust in order to obtain the maximization of energy and ventilation
efficiency without creating supply exhaust short-circuiting. In this sense, the use of
CFD simulations was encouraged, helping with architectural characteristics improv-
ing NV, such as building orientation and position, façades, size, and location of inlets
and outlets. Finally, a change in standards and guidelines was suggested by some
authors in order to improve energy consumption and energy savings, for instance
encouraging NV when possible.

5. Conclusions

Even though ventilation design is often aimed at ensuring adequate IAQ, thermo-
hygrometric comfort seems to be the main ventilation behavior driver for occupants.
Especially in non-residential buildings and after the COVID-19 pandemic, the approach in
ventilation studies has slightly changed to a health-based driven, rather than a comfort- or
energy-based one. In general, present research strongly highlights that hybrid ventilation
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is the most recommended solution in order to guarantee both energy savings and proper
IEQ conditions when not achievable with natural ventilation alone. This is particularly true
in extreme or polluted climates, where window openings alone can lead to poor indoor
conditions, and/or highly occupied or healthcare environments, where NV alone might not
be sufficient to maintain an adequate level of IAQ and healthy conditions. The literature
analyzed also suggests that, when possible (e.g., residential environments and smaller
offices) the hybrid solutions should also consider the necessity of control by occupants,
allowing to switch to a total manual system if required. Proper design of ventilation is
encouraged, promoting the use of numerical modelling such as CFD analyses, in order
to ensure IEQ and avoid issues such as short-circuiting of supply and exhaust air and
draught sensation by occupants. From present literature, it was highlighted how some
topics remain under-explored. The current tendency in indoor climate studies is to move
from the concept of comfort to a more holistic well-being one, considering aspects related
with comfort, satisfaction, health, and well-functioning. Nevertheless, the concept of well-
being was not explored in the literature here analyzed. Moreover, only marginal attention
was provided to visual, acoustic, and multi-domain comfort. Other under-explored topics
regard passive technologies such as night cooling, as well as some types of environments
such as healthcare facilities.

6. Future Developments

Ventilation is a key factor in the field of sustainable design, specifically regarding nZEB,
nPEB, and climate-responsive design, as energy savings strongly depend on ventilation
techniques. In this framework, the choice of proper ventilation type (to be energy-driven or
IEQ-driven) cannot be made regardless of indoor comfort and well-being. The use of either
NV, MV, or HV is highly dependent on the climate, the outside pollution, the building
type, and the season. In this sense, the ventilation system should be coupled with sensors
and smart home solutions, being able to switch from one typology to another whenever
the indoor and outdoor conditions allow or require it. Moreover, warning sensors might
be useful to advise occupants on the indoor pollutants and CO2 concentration when NV
is used.

Studies addressing the topic of well-being related with the comparison of NV and
MV are beneficial for human-centered indoor building design. Moreover, the literature,
standards, and guidelines would benefit from studies on ventilation exploring comfort
with a multi-domain perspective. Ventilation is clearly and directly connected with thermo-
hygrometric environment and IAQ, but recent studies agree on how all the comfort aspects
interact (e.g., noise-IAQ, emissions of pollutants with higher sunlight, phycological aspects).
For this reason, comfort studies coupling subjective surveys with objective measurements,
and correlating the comfort perception in terms of the four domains with each other would
be necessary. Moreover, some environments such as healthcare facilities need further
research in terms of comfort related with comparison of different ventilation techniques.
Ventilation studies might be mostly health-driven in these environments, but a significant
amount of previous literature underline the relationship between healing processes and
indoor well-being [52,139–141]: therefore, this aspect cannot be neglected.

The exploitation of night cooling allows to further exploit natural ventilation during
nighttime, when lower temperatures are present, using the delay in the heating process of
massive elements. Therefore, comparative comfort studies with and without this technique
would allow to assess the comfort benefits during morning hours, further encouraging
designers and stakeholders to exploit this technique. Other innovative passive solutions
have been proposed in the last years, including the use of internal cladding for improving
the thermal inertia, the coupling of massive elements with the smart use of shadings, use
of compact form to reduce the heat loss through the envelope area, organization of spaces
(e.g., non-habitable areas on eastern and western sides to act as additional thermal buffers,
living rooms towards south to better exploit solar gains, etc.), air quality control through
proper selection of materials in air-tight buildings, etc. [34,35,97,142–153]. The use of these
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techniques should be explored in terms of indoor well-being when coupled with MV and
NV systems.

7. Limitations

The present paper aims at providing an overview on the comparison of IEQ conditions
provided by different ventilation types. For this reason, it was chosen to include only papers
comprising and treating both the types of ventilation, in order to highlight the points in
common and differences in the indoor conditions and energy savings provided by each
ventilation technique. For this reason, the research can be expanded considering the two
ventilation types separately. Moreover, as it is common in review processes, the final papers
analyzed depend on the search query, the inclusion criteria, and the database considered.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/buildings12111983/s1. Table S1. Studies related with residential envi-
ronments: summary of key data, comfort domain treated, approach, main conclusions and type of
ventilation recommended. JP = journal paper; R = review; CP = conference paper. A.Ch. = air-change;
T.R. = thermal regulation; N.C. = night cooling. “T.H.” = thermo-hygrometric; “Vis.” = visual;
“IAQ” = indoor air quality; “Ac.” = acoustic; “M.Do.” = multi-domain. NV = natural ventilation;
MV = mechanical ventilation; HV = hybrid ventilation; NP = no preference. “Env.” = environment;
“Vent. Rec.” = ventilation recommended; “Res.” = residential. T = temperature; RH = Relative Humid-
ity; ACR=air-change rate. Table S2. Studies related with non-residential environments: summary of
key data, comfort domain treated, approach, main conclusions and type of ventilation recommended.
JP = journal paper; R = review; CP = conference paper. A.Ch. = air-change; T.R. = thermal regulation;
N.C. = night cooling. “T.H.” = thermo-hygrometric; “Vis.” =visual; “IAQ” = indoor air quality;
“Ac.” = acoustic; “M.Do.” = multi-domain. NV = natural ventilation; MV = mechanical ventilation;
HV = hybrid ventilation; NP = no preference. “Env.” = environment; “Vent. Rec.” = ventilation
recommended; “Edu.” = educational; “Hea.” = healthcare; “Wor.” = working; “Ind.” = industrial;
“Amu.” = amusement; “Gen.” = non-residential in general. T = temperature; RH = Relative Humidity;
ACR=air-change rate. Table S3. Studies not related with a specific type of environment: summary
of key data, comfort domain treated, approach, main conclusions and type of ventilation recom-
mended. JP = journal paper; R = review; CP = conference paper. A.Ch. = air-change; T.R. = thermal
regulation; N.C. = night cooling. “T.H.” = thermo-hygrometric; “Vis.” =visual; “IAQ” = indoor air
quality; “Ac.” = acoustic; “M.Do.” = multi-domain. NV = natural ventilation; MV = mechanical
ventilation; HV = hybrid ventilation; NP = no preference. “Env.” = environment; “Vent. Rec.” =
ventilation recommended; “Var.” = Various/Inapplicable. T = temperature; RH = Relative Humidity;
ACR = air-change rate.
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Appendix A

Figure A1. PRISMA flowchart depicting the inclusion/exclusion and screening process. Adapted
with permission from PRISMA Website [82].

Figure A2. Papers found for each publication year.
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Figure A3. Percentage of papers produced in each continent.

Figure A4. Papers found for each country/region.
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